scholarly journals Transcriptional heterogeneity in cancer-associated regulatory T cells is predictive of survival

2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.

2019 ◽  
Vol 28 (12) ◽  
pp. 1603-1613 ◽  
Author(s):  
Marcus Bergström ◽  
Malin Müller ◽  
Marie Karlsson ◽  
Hanne Scholz ◽  
Nils Tore Vethe ◽  
...  

Adoptive transfer of autologous polyclonal regulatory T cells (Tregs) is a promising option for reducing graft rejection in allogeneic transplantation. To gain therapeutic levels of Tregs there is a need to expand obtained cells ex vivo, usually in the presence of the mTOR inhibitor Rapamycin due to its ability to suppress proliferation of non-Treg T cells, thus promoting a purer Treg yield. Azithromycin is a bacteriostatic macrolide with mTOR inhibitory activity that has been shown to exert immunomodulatory effects on several types of immune cells. In this study we investigated the effects of Azithromycin, compared with Rapamycin, on Treg phenotype, growth, and function when expanding bulk, naïve, and memory Tregs. Furthermore, the intracellular concentration of Rapamycin in CD4+ T cells as well as in the culture medium was measured for up to 48 h after supplemented. Treg phenotype was assessed by flow cytometry and Treg function was measured as inhibition of responder T-cell expansion in a suppression assay. The concentration of Rapamycin was quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Azithromycin and Rapamycin both promoted a FoxP3-positive Treg phenotype in bulk Tregs, while Rapamycin also increased FoxP3 and FoxP3+Helios positivity in naïve and memory Tregs. Furthermore, Rapamycin inhibited the expansion of naïve Tregs, but also increased their suppressive effect. Rapamycin was quickly degraded in 37°C medium, yet was retained intracellularly. While both compounds may benefit expansion of FoxP3+ Tregs in vitro, further studies elucidating the effects of Azithromycin treatment on Tregs are needed to determine its potential use.


2020 ◽  
Vol 222 (7) ◽  
pp. 1222-1234 ◽  
Author(s):  
Benjamin J Gaborit ◽  
Antoine Roquilly ◽  
Cédric Louvet ◽  
Abderrahmane Sadek ◽  
Benoit Tessoulin ◽  
...  

Abstract Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 812-812 ◽  
Author(s):  
Emanuela I Sega ◽  
Dennis Leveson-Gower ◽  
Vu H. Nguyen ◽  
Robert Negrin

Abstract Graft versus host disease (GVHD) is a major complication of hematopoietic stem cell transplantation resulting from donor T cell reactivity against host tissue antigens. CD4+CD25+Foxp3+ regulatory T cells (Treg) are known to be important in maintaining self tolerance and preventing autoimmunity. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown that donor Treg are able to suppress GVHD induced by donor allogeneic T cells and dramatically improve survival. Treg are rare and suppression of GVHD requires adequate numbers of Treg in relation to the number of conventional T cells (Tcon). To overcome this problem, expansion of Treg has been performed, however there has not been a head to head comparison of the function of expanded vs fresh Treg. Highly purified CD4+CD25+Foxp3+ T cells (>98% purity) were expanded using anti-CD3/anti-CD28 dynabeads and 1000 U/ml IL-2. Under these conditions, after five days Treg expanded up to 13 fold while maintaining high Foxp3 expression levels (85–90%). Longer expansion periods result in more T cell expansion but an overgrowth of Foxp3 negative T cells. In a mixed lymphocyte reaction assay, the ex-vivo expanded Treg efficiently suppressed the proliferation of alloreactive T cells. The expanded Treg were evaluated in an in vivo acute GVHD mouse model in direct comparison with freshly isolated Treg using a novel bioluminescent imaging assay that allowed for assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight gain, survival and GVHD score. Initial experiments show that, similar to freshly isolated Treg, the ex-vivo expanded Treg suppress GVHD symptoms and improve survival, although a greater number of expanded Treg were required comparable to freshly isolated Treg. The mean GVHD score for the Tcon alone group was 5.8±1.02. Fresh Treg added at 1:1 ratio decreased the GVHD score to 0.75±0.25 (p=0.0036). Ex-vivo expanded Treg demonstrated a dose-dependent decrease in GVHD score, although four times more expanded Treg were needed to obtain a similar reduction in GVHD score (0.50±0.5, p=0.0036). This observed difference in potency was not due to the ex-vivo expanded Treg being short-lived when infused in mice. Bioluminescence imaging of luciferase positive (luc+) cultured Treg showed the same in vivo persistence as freshly isolated Treg. The ability to expand ex-vivo generated Treg is greater than the difference in potency, making ex-vivo expanded Treg potentially a viable option for treatment of GVHD, however, increased ratios of Treg:Tcon are likely to be required.


2015 ◽  
Vol 112 (19) ◽  
pp. 6140-6145 ◽  
Author(s):  
Emanuela Romano ◽  
Monika Kusio-Kobialka ◽  
Periklis G. Foukas ◽  
Petra Baumgaertner ◽  
Christiane Meyer ◽  
...  

Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16− monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.


2019 ◽  
Author(s):  
Azlann Arnett ◽  
Keagan G Moo ◽  
Kaitlin J Flynn ◽  
Thomas B Sundberg ◽  
Liv Johannessen ◽  
...  

AbstractImmune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. A holistic understanding of how individual small molecules affect this balance is essential to anticipate immune-related side effects, select mitigating immunomodulatory therapies and highlight novel utility as immunomodulators. We previously showed that the high-specificity, low-toxicity cyclin dependent kinase 8 (CDK8) inhibitor DCA promotes tolerogenic effects in innate immune cells. Here, we demonstrate that DCA exerts a novel profile of tolerogenic activity on CD4+ T cells, promoting Treg and Th2 while inhibiting Th1 and Th17 differentiation. DCA enhances human Treg differentiation and our models demonstrate clear tolerogenic function of DCA-driven Tregs in the absence of confounding contribution from DCA-innate immune interactions. DCA engages unique mechanisms, including specifically enhancing early Foxp3 expression via regulating c-Jun phosphorylation, to promote Treg differentiation. CDK8 inhibitors are currently being developed to treat cancer; our findings suggest that the potential blunting of host-versus-tumor effects may warrant ancillary pro-inflammatory agents. Importantly, these results highlight novel utility of DCA as an immunomodulator, not only in vivo, but also in ex vivo cellular therapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2978-2978 ◽  
Author(s):  
Jeff Davies ◽  
Dongin Yuk ◽  
Lisa Brennan ◽  
Lee Nadler ◽  
Eva Guinan

Abstract Preventing Graft-versus-Host Disease (GvHD) without impairment of immune reconstitution is a major goal in HLA-mismatched hematopoietic stem cell transplantation (HSCT). Many experimental strategies to selectively destroy or remove alloreactive donor T cells after allostimulation prior to infusion have been explored. An alternative approach is costimulatory blockade (CSB) during ex vivo allostimulation of donor T cells, rendering allospecific T cells within the donor cell pool alloanergized (i.e hyporesponsive to subsequent alloantigenic challenge). Murine and human data suggest effective induction of alloanergy by ex vivo CSB may involve an active cell-mediated suppression process requiring the presence of CD4+ CD25+ regulatory T cells (Tregs). We conducted a pilot clinical study of haploidentical HSCT after allospecific CSB with anti-B7.1 and -B7.2 antibodies and measured reconstitution of Treg by intracellular flow cytometry. 5 patients (pts; 4 high risk acute lymphoblastic leukemia, one marrow failure) underwent cyclophosphamide/TBI-conditioned haploidentical HSCT with cyclosporine and methotrexate as GvHD prophylaxis. Donor bone marrow was incubated with irradiated recipient peripheral blood mononuclear cells and 10μg anti-B7.1/2 antibodies/106 cells for 48 hours to induce alloanergy, washed and infused. All pts engrafted. All evaluable patients had a marked relative increase in peripheral blood CD4+ FOXP3+ T cells at D+20-60 (Figure 1). CD4+ FOXP3+ cells were CD25+ CD45RO+ intracellular CTLA4+ CD127lo consistent with a memory Treg phenotype. Treg were predominantly negative for HLA DR differentiating them from activated T cells. Despite receiving high doses of mismatched donor T cells (median 1.8 (CD4) and 3.1 (CD8) x 107/kg) and all pts achieving 100% donor chimerism, only 2 pts developed acute GvHD, both Grade II, resolving after short courses of corticosteroids. All evaluable patients also had an increase in CD4+ T effector (Teff) cells with an activated phenotype (CD25+ HLA DR+ FOXP3-) at D+30-50. Pts had very rapid immune reconstitution (CD4, CD8, NK and CD8-CMV-tetramer+ cell numbers and immunoglobulin levels) and have had normal vaccination responses. 2 pts died, at D+35 (bacterial sepsis) and D+71 (multi-organ failure), both without GvHD. 3 pts survive (median follow up 5 years) with normal performance status with no chronic GvHD or disease relapse. Conditioning-related cytokine secretion may have led to reversal of anergy in vivo and expansion of alloreactive cells within the Teff cell population. The marked in vivo expansion of Treg may represent one mechanism of suppression of alloreactive Teff and subsequent immunological control of acute GvHD without impairing immune reconstitution in pts receiving HLA-mismatched donor T cells after ex vivo allospecific CSB. We are using a modification of this strategy in a clinical trial of delayed infusion of escalating doses of alloanergized donor T cells after CD34-selected haploidentical HSCT, to determine the optimal dose of alloanergized donor T cells that controls acute GvHD without impairment of immune reconstitution. Figure Figure


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
J. Luis Espinoza ◽  
Ly Quoc Trung ◽  
Pleiades T. Inaoka ◽  
Kayoko Yamada ◽  
Dao T. An ◽  
...  

Preclinical studies have shown that resveratrol exerts immunomodulatory effects with potential clinical value in the amelioration of autoimmune disorders and cancer prevention; however, little is known about the in vivo effects of this naturally occurring polyphenol on human immune cells. We assessed the effects of repeated doses of resveratrol (1000 mg/day for 28 days) on circulating immune cells in healthy Japanese individuals. Resveratrol was safe and well tolerated and was associated with significant increases in the numbers of circulating γδ T cells and regulatory T cells and resulted in small, yet significant, decreases in the plasma levels of the proinflammatory cytokines TNF-α and MCP-1 and a significant increase in the plasma antioxidant activity compared with the corresponding antioxidant baseline activity and with that in four control individuals. In in vitro studies, resveratrol significantly improved the growth of γδ T cells and regulatory T cells. These findings demonstrate that resveratrol has some clear biological effects on human circulating immune cells. Further studies are necessary to interpret the long-term immunological changes associated with resveratrol treatment.


2020 ◽  
Vol 8 (4) ◽  
pp. 512-522
Author(s):  
Adan C. Jirmo ◽  
Charlotte Rossdam ◽  
Ruth Grychtol ◽  
Christine Happle ◽  
Rita Gerardy‐Schahn ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 81-81
Author(s):  
Lauren K. Meyer ◽  
Katherine Verbist ◽  
Sabrin Albeituni ◽  
Rachel Bassett ◽  
Michelle L. Hermiston ◽  
...  

Hemophagocytic lymphohistiocytosis (HLH) is a severe immunologic syndrome characterized by a failure of CD8 T-cells to appropriately terminate immune responses, leading to excessive activation of immune cells that mediate life-threatening organ damage. Many patients with HLH are refractory to front-line therapy consisting primarily of the glucocorticoid dexamethasone (DEX) and the chemotherapeutic agent etoposide, resulting in five-year survival rates of only 62%. Therefore, novel strategies are needed to enhance the efficacy of frontline therapy in order to improve clinical outcomes. Hypercytokinemia is a hallmark feature of HLH due to the persistent activation of immune cells. CD8 T-cells both secrete and respond to these cytokines, making them important cellular targets of HLH therapy. Many HLH-associated cytokines activate the JAK/STAT pathway, and the JAK1/2 inhibitor ruxolitinib (RUX) has shown efficacy in murine models of HLH and in clinical case reports of refractory HLH. Importantly, JAK/STAT signaling has been shown in other disease contexts to induce DEX resistance. We therefore hypothesized that cytokine-mediated JAK/STAT signaling might contribute to DEX resistance in HLH and that this could be overcome by combination treatment with RUX. To test this hypothesis, we infected Prf1-/- mice with lymphocytic choriomeningitis virus (LCMV) to generate an in vivo model of primary HLH. Beginning on day four post-infection, mice were treated with vehicle control, DEX, RUX, or the combination of DEX and RUX and examined for signs of HLH. The Bliss independence model of synergy was applied to quantify the combinatorial effects of these drugs on disease parameters. Combined treatment with DEX and RUX synergistically lessened signs of systemic inflammation, including splenomegaly, numbers of inflammatory cells, including neutrophils and CD8 T-cells, and circulating levels of inflammatory cytokines. The mechanistic basis for these findings was then interrogated ex vivo. First, activated murine and human CD8 T-cells were exposed to DEX or etoposide in the presence of HLH-associated cytokines and were evaluated for cell viability. This revealed that the JAK-dependent cytokines IL-2 and IL-12 confer resistance specifically to DEX, but not to etoposide. IL-2 and IL-12 receptor signaling converge to activate STAT5. Consistent with this, exposure to RUX attenuated STAT5 activation in response to IL-2 or IL-12 stimulation. Furthermore, DEX and RUX synergized to induce cell death in the presence of IL-2 or IL-12. Mechanistic studies revealed that cytokine exposure did not inhibit nuclear translocation of ligand-activated glucocorticoid receptor (GR) or activation of GR transcriptional targets, suggesting that IL-2 and IL-12 act downstream of GR activity to confer DEX resistance. To interrogate this further, we quantified expression of BCL-2 family members in CD8 T-cells exposed to IL-2 or IL-12 and found significant upregulation of BCL-2 and BCL-XL. Using BH3 profiling, we functionally interrogated the intrinsic apoptotic pathway and found that cytokine exposure significantly suppressed the apoptotic potential of CD8 T-cells, such that DEX alone was no longer sufficient to induce apoptotic priming. However, concomitant exposure to RUX effectively restored apoptotic priming in response to DEX by inhibiting cytokine-induced upregulation of BCL-2 and BCL-XL. Finally, we performed BH3 profiling on cells from Prf1-/- mice following in vivo treatment with DEX +/- RUX. Similar to the ex vivo findings, LCMV infection and the subsequent onset of HLH significantly reduced the apoptotic potential of CD8 T-cells relative to cells from naïve mice, consistent with elevated levels of circulating cytokines in vivo. Combined treatment with DEX and RUX was more effective than either agent alone at inducing apoptotic priming, suggesting that both ex vivo and in vivo, cytokine exposure inhibits DEX-induced cell death by altering the cellular apoptotic potential. Taken together, this study reveals a mechanism of cytokine-mediated DEX resistance in HLH and provides rationale for combining DEX and RUX as a means to augment DEX sensitivity and improve clinical outcomes for patients with HLH. Figure Disclosures Nichols: Incyte: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document