scholarly journals Heritable genetic variants in key cancer genes link cancer risk with anthropometric traits

2020 ◽  
pp. jmedgenet-2019-106799
Author(s):  
Matteo Di Giovannantonio ◽  
Benjamin HL Harris ◽  
Ping Zhang ◽  
Isaac Kitchen-Smith ◽  
Lingyun Xiong ◽  
...  

BackgroundHeight and other anthropometric measures are consistently found to associate with differential cancer risk. However, both genetic and mechanistic insights into these epidemiological associations are notably lacking. Conversely, inherited genetic variants in tumour suppressors and oncogenes increase cancer risk, but little is known about their influence on anthropometric traits.MethodsBy integrating inherited and somatic cancer genetic data from the Genome-Wide Association Study Catalog, expression Quantitative Trait Loci databases and the Cancer Gene Census, we identify SNPs that associate with different cancer types and differential gene expression in at least one tissue type, and explore the potential pleiotropic associations of these SNPs with anthropometric traits through SNP-wise association in a cohort of 500,000 individuals.ResultsWe identify three regulatory SNPs for three important cancer genes, FANCA, MAP3K1 and TP53 that associate with both anthropometric traits and cancer risk. Of particular interest, we identify a previously unrecognised strong association between the rs78378222[C] SNP in the 3' untranslated region (3'-UTR) of TP53 and both increased risk for developing non-melanomatous skin cancer (OR=1.36 (95% 1.31 to 1.41), adjusted p=7.62E−63), brain malignancy (OR=3.12 (2.22 to 4.37), adjusted p=1.43E−12) and increased standing height (adjusted p=2.18E−24, beta=0.073±0.007), lean body mass (adjusted p=8.34E−37, beta=0.073±0.005) and basal metabolic rate (adjusted p=1.13E−31, beta=0.076±0.006), thus offering a novel genetic link between these anthropometric traits and cancer risk.ConclusionOur results clearly demonstrate that heritable variants in key cancer genes can associate with both differential cancer risk and anthropometric traits in the general population, thereby lending support for a genetic basis for linking these human phenotypes.

2018 ◽  
Vol 25 (4) ◽  
pp. 565-573 ◽  
Author(s):  
Dorothea Buck ◽  
Till FM Andlauer ◽  
Wilmar Igl ◽  
Eva-Maria Wicklein ◽  
Mark Mühlau ◽  
...  

Background: Treatment of multiple sclerosis (MS) with interferon β can lead to the development of antibodies directed against interferon β that interfere with treatment efficacy. Several observational studies have proposed different HLA alleles and genetic variants associated with the development of antibodies against interferon β. Objective: To validate the proposed genetic markers and to identify new markers. Methods: Associations of genetic candidate markers with antibody presence and development were examined in a post hoc analysis in 941 patients treated with interferon β-1b in the Betaferon® Efficacy Yielding Outcomes of a New Dose (BEYOND) and BEtaseron®/BEtaferon® in Newly Emerging multiple sclerosis For Initial Treatment (BENEFIT) prospective phase III trials. All patients were treated with interferon β-1b for at least 6 months. In addition, a genome-wide association study was conducted to identify new genetic variants. Results: We confirmed an increased risk for carriers of HLA-DRB1*04:01 (odds ratio (OR) = 3.3, p = 6.9 × 10−4) and HLA-DRB1*07:01 (OR = 1.8, p = 3.5 × 10−3) for developing neutralizing antibodies (NAbs). Several additional, previously proposed HLA alleles and genetic variants showed nominally significant associations. In the exploratory analysis, variants in the HLA region were associated with NAb development at genome-wide significance (OR = 2.6, p = 2.30 × 10−15). Conclusion: The contribution of HLA alleles and HLA-associated single-nucleotide polymorphisms (SNPs) to the development and titer of antibodies against interferon β was confirmed in the combined analysis of two multi-national, multi-center studies.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130109 ◽  
Author(s):  
Giuseppe Matullo ◽  
Simonetta Guarrera ◽  
Marta Betti ◽  
Giovanni Fiorito ◽  
Daniela Ferrante ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Jianchang Hu ◽  
Cai Li ◽  
Shiying Wang ◽  
Ting Li ◽  
Heping Zhang

Abstract Background The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogeneous. Studies have reported that males and some ethnic groups are at increased risk of death from COVID-19, which implies that individual risk of death might be influenced by host genetic factors. Methods In this project, we consider the mortality as the trait of interest and perform a genome-wide association study (GWAS) of data for 1778 infected cases (445 deaths, 25.03%) distributed by the UK Biobank. Traditional GWAS fails to identify any genome-wide significant genetic variants from this dataset. To enhance the power of GWAS and account for possible multi-loci interactions, we adopt the concept of super variant for the detection of genetic factors. A discovery-validation procedure is used for verifying the potential associations. Results We find 8 super variants that are consistently identified across multiple replications as susceptibility loci for COVID-19 mortality. The identified risk factors on chromosomes 2, 6, 7, 8, 10, 16, and 17 contain genetic variants and genes related to cilia dysfunctions (DNAH7 and CLUAP1), cardiovascular diseases (DES and SPEG), thromboembolic disease (STXBP5), mitochondrial dysfunctions (TOMM7), and innate immune system (WSB1). It is noteworthy that DNAH7 has been reported recently as the most downregulated gene after infecting human bronchial epithelial cells with SARS-CoV-2. Conclusions Eight genetic variants are identified to significantly increase the risk of COVID-19 mortality among the patients with white British ancestry. These findings may provide timely clues and potential directions for better understanding the molecular pathogenesis of COVID-19 and the genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


2020 ◽  
Author(s):  
Jianchang Hu ◽  
Cai Li ◽  
Shiying Wang ◽  
Ting Li ◽  
Heping Zhang

AbstractBackgroundThe severity of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogenous. Studies have reported that males and some ethnic groups are at increased risk of death from COVID-19, which implies that individual risk of death might be influenced by host genetic factors.MethodsIn this project, we consider the mortality as the trait of interest and perform a genome-wide association study (GWAS) of data for 1,778 infected cases (445 deaths, 25.03%) distributed by the UK Biobank. Traditional GWAS failed to identify any genome-wide significant genetic variants from this dataset. To enhance the power of GWAS and account for possible multi-loci interactions, we adopt the concept of super-variant for the detection of genetic factors. A discovery-validation procedure is used for verifying the potential associations.ResultsWe find 8 super-variants that are consistently identified across multiple replications as susceptibility loci for COVID-19 mortality. The identified risk factors on Chromosomes 2, 6, 7, 8, 10, 16, and 17 contain genetic variants and genes related to cilia dysfunctions (DNAH7 and CLUAP1), cardiovascular diseases (DES and SPEG), thromboembolic disease (STXBP5), mitochondrial dysfunctions (TOMM7), and innate immune system (WSB1). It is noteworthy that DNAH7 has been reported recently as the most downregulated gene after infecting human bronchial epithelial cells with SARS-CoV2.ConclusionsEight genetic variants are identified to significantly increase risk of COVID-19 mortality among the patients with white British ancestry. These findings may provide timely evidence and clues for better understanding the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61253 ◽  
Author(s):  
Giuseppe Matullo ◽  
Simonetta Guarrera ◽  
Marta Betti ◽  
Giovanni Fiorito ◽  
Daniela Ferrante ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 268-279
Author(s):  
Ying Liu ◽  
Zhi Li ◽  
Xinyue Tang ◽  
Min Li ◽  
Feng Shi

Background: A previous genome-wide association study showed that hTERT rs10069690 and rs2736100 polymorphisms were associated with thyroid cancer risk. Objective: This study further investigated the association between increased risk and clinicopathologic characteristics for Papillary Thyroid Carcinoma (PTC) and hTERT polymorphisms rs10069690 or rs2736100 in a Chinese female population. Methods: The hTERT genotypes of 276 PTC patients and 345 healthy subjects were determined with regard to SNPs rs10069690 and rs2736100. The association between these SNPs and the risk of PTC and clinicopathologic characteristics was investigated by logistic regression. Results: We found a significant difference between PTC and rs10069690 (Odds Ratio (OR) = 1.515; P = 0.005), but not between PTC and rs2736100. When the analysis was limited to females, rs10069690 and rs2736100 were both associated with increased risk for PTC in female individuals (OR = 1.647, P = 0.007; OR = 1.339, P = 0.041, respectively). Further haplotype analysis revealed a stimulative effect of haplotypes TC and CA of TERT rs10069690-rs2736100, which increased risk for PTC in female individuals (OR = 1.579, P = 0.014; OR = 0.726, P = 0.025, respectively). Furthermore, the heterozygote A/C of rs2736100 showed significant difference for age (OR = 0.514, P = 0.047). Conclusion: Our finding suggests that hTERT polymorphisms rs10069690 and rs2736100 are associated with increased risk for PTC in Chinese female population and rs2736100 may be related to age. Consistent with US20170360914 and US20170232075, they are expected to be a potential molecular target for anti-cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document