scholarly journals Hydroxychloroquine and COVID-19

2020 ◽  
Vol 96 (1139) ◽  
pp. 550-555 ◽  
Author(s):  
Neeraj Sinha ◽  
Galit Balayla

Hydroxychloroquine and chloroquine are medications that have been used for a long time. Their most common use is for the treatment and prophylaxis of malaria. However, these antimalarial drugs are known to also have anti-inflammatory and antiviral effects and are used for several chronic diseases such as systemic lupus erythematosus with low adverse effects. The antiviral action of hydroxychloroquine and chloroquine has been a point of interest to different researchers due to its mechanism of action. Several in vitro studies have proven their effectiveness on severe acute respiratory syndrome virus and currently both in vitro and in vivo studies have been conducted on 2019 novel coronavirus (covid-19). The purpose of this article is to review the history and mechanism of actions of these drugs and the potential use they can have on the current covid-19 pandemic.

2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


2021 ◽  
pp. 22-25
Author(s):  
Miguel Salavert Lletí ◽  
◽  
Víctor García-Bustos ◽  
Laura Morata Ruiz ◽  
Marta Dafne Cabañero-Navalon

The most relevant information on the clinical uses of tedizolid from studies published in the last 18 months is presented in this brief review. The most important data indicate better tolerance and safety profile of long-term therapeutic regimes in off-label indications, such as osteoarticular infections and those caused by mycobacteria. Its lower risk of hazardous interactions compared to linezolid should be emphasized. Furthermore, tedizolid in its combination with rifampicin shows a more favourable way of acting as demonstrated in vitro and in vivo studies. A recent trial also opens the door for its potential use in nosocomial pneumonia caused by Gram-positive bacteria.


Author(s):  
Siva Ram

Covid-19, an infectious disease caused by a novel coronavirus SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the nose when an infected person talks, coughs or sneezes where the viruses are active in the environment within the suspended micro droplets. Sanitization of environment to weaken/terminate the virus and halting the replication of virus inside the host along with symptomatic treatment is the primary approach to end the pandemic. In Ayurveda, Dhupana (medicated fumigation of vicinity) and Dhumapana (medicated smoking) therapies done by drugs of herbal/animal/mineral origin are a swift way to decontaminate the environment and Respiratory system. Dhuma (medicated fumes) is a unique drug delivery system acting directly on respiratory tissues which can deliver quick results in this Covid-19 pandemic by its local and systematic effects recommended by AYUSH ministry in the guidelines for Covid-19. We intend to put forward the scientific explanation of powerful Ayurvedic Cannabis based polyherbal dhumapana (medicated smoking) medication named Dhuma Yoga available in the market as an alternate remedy for Covid-19 whose four out of five herbal ingredients are in the list of WHO manual of traditional medicine. We emphasized on Vijaya (Cannabis sativa Linn.) as the centre of formulation because it is a Rasayana (rejuvenative) herb having Vyavayi (fast acting) and Yogavahi (synergetic) properties. Phytochemicals of all the herbal ingredients of Dhuma Yoga formulation are studied through in silico, In vitro and In vivo studies for Covid-19 with favourable outcomes.


2021 ◽  
Vol 23 (1) ◽  
pp. 149-155
Author(s):  
Asaf Tzachor ◽  
Or Rozen ◽  
Soliman Khatib ◽  
Sophie Jensen ◽  
Dorit Avni

AbstractAn array of infections, including the novel coronavirus (SARS-CoV-2), trigger macrophage activation syndrome (MAS) and subsequently hypercytokinemia, commonly referred to as a cytokine storm (CS). It is postulated that CS is mainly responsible for critical COVID-19 cases, including acute respiratory distress syndrome (ARDS). Recognizing the therapeutic potential of Spirulina blue-green algae (Arthrospira platensis), in this in vitro stimulation study, LPS-activated macrophages and monocytes were treated with aqueous extracts of Spirulina, cultivated in either natural or controlled light conditions. We report that an extract of photosynthetically controlled Spirulina (LED Spirulina), at a concentration of 0.1 µg/mL, decreases macrophage and monocyte-induced TNF-α secretion levels by over 70% and 40%, respectively. We propose prompt in vivo studies in animal models and human subjects to determine the putative effectiveness of a natural, algae-based treatment for viral CS and ARDS, and explore the potential of a novel anti-TNF-α therapy. Graphical abstract


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2857-2857
Author(s):  
Ali Amirkhosravi ◽  
Todd V Meyer ◽  
Liza Robles-Carillo ◽  
Monica Davila ◽  
Florian Langer ◽  
...  

Abstract Anti-CD40 ligand (anti-CD40L) immunotherapy in patients with systemic lupus erythematosus (SLE, a chronic inflammatory autoimmune disease) resulted in unexpected thromboembolic fatalities. In our laboratory, previous in vitro mechanistic (flow cytometry, aggregation, and dense granule release) studies have shown that monoclonal anti-CD40L immune complexes potently activate platelets via the IgG receptor (FcγRIIa). The data suggested this activity was also dependent on the CD40L receptor (CD40), which is constitutively expressed on resting and activated platelets. This raised the possibility that autoantibodies against CD40L maybe present in patients with thrombotic autoimmune diseases such as SLE and anti-phospholipid syndrome (APS) and possibly contribute to the pathogenesis of thrombosis in such patients. We hypothesized that monoclonal anti-CD40L immune complexes (anti-CD40L IC) should exhibit prothrombotic effects in animals via IC-induced platelet activation, and CD40 ligand autoantibodies may be prevalent in patients with thrombotic auto-immune disorders. Mouse platelets, however, do not carry FcγRIIa. Therefore, to study anti-CD40L IC-induced platelet activation in vivo, we used mice transgenic for human FcγRIIa (“hFcR” mice). Immune complexes consisting of the anti-CD40L monoclonal antibody, M90, plus recombinant soluble CD40L (M90+sCD40L), or control reagents were injected intravenously (tail vein) into wild type (WT) or hFcR mice. Platelets were counted from 10–60 minutes thereafter. Additionally, plasma samples from patients with SLE (n=54), APS, (n=8), idiopathic thrombosis (n=34), and control subjects (n=86) were tested for the presence of IgG-type anti-CD40L autoantibodies using a highly optimized in-house ELISA. The injection of M90+CD40L IC (100–500 nM) produced symptoms consistent with thrombotic shock and induced severe thrombocytopenia (10–30% of basal platelet count) in hFcR (n=10–20) but not WT (n=5) mice—indicating that IC-induced thrombocytopenia was mediated via platelet FcγRIIa, as was found in vitro. Platelet priming by subaggregatory amounts of ADP greatly increased the sensitivity of hFcR mice to anti-CD40L IC (≥ eight-fold—as low as 12.5 nM). Furthermore, sequential injections of sCD40L followed by M90 in hFcR mice caused similar effects, indicating that ICs can also form while circulating. Injections of M90 or sCD40L alone were inactive in all animals. The prevalence of CD40L autoantibodies was notably higher in patients with SLE or APS compared to control subjects [13/54 (24%) or 3/12 (25%) vs. 5/86 (6%), P=0.002 and P=0.09 respectively]. Although CD40L autoantibodies were also more prevalent in patients with SLE and APS than in those with idiopathic thrombosis [2/34 (6%)], this difference was not statistically significant (P=0.058 and 0.2 respectively). Our findings demonstrate that the platelet activation caused by of anti-CD40L IC can be reproduced in mice, but only in those transgenic for the human IgG receptor (Fcγ RIIa). These in vivo findings may shed light on the thromboembolic complications associated with CD40L immunotherapy. Furthermore, our hFcR mouse model is a promising approach for assessing the hemostatic safety of CD40L—and possibly other—therapeutic antibodies. Our results also show that autoantibodies to CD40L occur at relatively high frequency in patients with SLE and APS. While a causal relationship between such antibodies and thrombotic risk remains unidentified, our in vivo studies suggest further investigation is warranted.


2020 ◽  
Author(s):  
MUBARAK ALAMRI ◽  
Ali Altharawi ◽  
Alhumaidi B. Alabbas ◽  
Manal A. Alossaimi ◽  
Safar M. Alqahtani

Coronavirus disease 2019 (COVID-19) has affected almost every country in the world by causing a global pandemic with a high mortality rate. Lack of an effective vaccine and/or antiviral drugs against SARS-CoV-2, the causative agent, has severely hampered the response to this novel coronavirus. Natural products have long been used in traditional medicines to treat various diseases, and purified phytochemicals from medicinal plants provide a valuable scaffold for the discovery of new drug leads. In the present study, we performed a computational screening of an in-house database composed of ~1000 phytochemicals derived from traditional Saudi medicinal plants with recognised antiviral activity. Structure-based virtual screening was carried out against three druggable SARS-CoV-2 targets, viral RNAdependent RNA polymerase (RdRp), 3-chymotrypsin-like cysteine protease (3CLpro) and papain like protease (PLpro) to identify putative inhibitors that could facilitate the development of potential anti-COVID-19 drug candidates. Computational analyses identified three compounds inhibiting each target, with binding affinity scores ranging from-9.9 to -6.5 kcal/mol. Among these, luteolin 7-rutinoside, chrysophanol 8-(6-galloylglucoside) and kaempferol 7-(6’’-galloylglucoside) bound efficiently to RdRp, while chrysophanol 8-(6galloylglucoside), 3,4,5-tri-O-galloylquinic acid and mulberrofuran G interacted strongly with 3CLpro, and withanolide A, isocodonocarpine and calonysterone bound tightly to PLpro. These potential drug candidates will be subjected to further in vitro and in vivo studies and may assist the development of effective anti-COVID-19 drugs.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 657 ◽  
Author(s):  
Mingxin Zhang ◽  
Taofeng Du ◽  
Feixiang Long ◽  
Xia Yang ◽  
Yankuo Sun ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pork industry as it continues to cause significant economic loss worldwide. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Consequently, there is an urgent need to develop new antiviral strategies. Platycodin D (PD) is one of the major bioactive triterpenoid saponins derived from Platycodon grandiflorum, a traditional Chinese medicine used as an expectorant for pulmonary diseases and a remedy for respiratory disorders. Here, we demonstrate that PD exhibits potent activity against PRRSV infection in Marc-145 cells and primary porcine alveolar macrophages. PD exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV GD-HD strain and GD-XH strain as well as classical CH-1a and VR2332 strains. PD at concentrations ranging 1–4 μM significantly inhibited PRRSV RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. EC50 values of PD against four tested PRRSV strains infection in Marc-145 cells ranged from 0.74 to 1.76 μM. Mechanistically, PD inhibited PRRSV replication by directly interacting with virions therefore affecting multiple stages of the virus life cycle, including viral entry and progeny virus release. In addition, PD decreased PRRSV- and LPS-induced cytokine (IFN-α, IFN-β, IL-1α, IL-6, IL-8 and TNF-α) production in PAMs. Altogether, our findings suggested that PD is a potent inhibitor of PPRSV infection in vitro. However, further in vivo studies are necessary to confirm PD as a potential novel and effective PPRSV inhibitor in swine.


2013 ◽  
Vol 2 ◽  
pp. e80 ◽  
Author(s):  
Taejin Kim ◽  
Kirill A. Afonin ◽  
Mathias Viard ◽  
Alexey Y Koyfman ◽  
Selene Sparks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document