scholarly journals Tedizolid: new data and experiences for clinical practice

2021 ◽  
pp. 22-25
Author(s):  
Miguel Salavert Lletí ◽  
◽  
Víctor García-Bustos ◽  
Laura Morata Ruiz ◽  
Marta Dafne Cabañero-Navalon

The most relevant information on the clinical uses of tedizolid from studies published in the last 18 months is presented in this brief review. The most important data indicate better tolerance and safety profile of long-term therapeutic regimes in off-label indications, such as osteoarticular infections and those caused by mycobacteria. Its lower risk of hazardous interactions compared to linezolid should be emphasized. Furthermore, tedizolid in its combination with rifampicin shows a more favourable way of acting as demonstrated in vitro and in vivo studies. A recent trial also opens the door for its potential use in nosocomial pneumonia caused by Gram-positive bacteria.

2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


2009 ◽  
Vol 1241 ◽  
Author(s):  
Anna Fucikova ◽  
Jan Valenta ◽  
Ivan Pelant ◽  
Vitezslav Brezina

AbstractThe commercially available semiconductor quantum dots have been proven to be slightly to significantly toxic by recent publications depending on the chemical composition. We are developing new non-toxic fluorescent labels based on (i) nanocrystalline silicon, suitable for in vivo studies due to their biodegrability, and on (ii) nanodiamonds, intended mainly for in vitro use due to their long-term stability and nondegradilibity.


2021 ◽  
Author(s):  
William Eduardo Furtado ◽  
Lucas Cardoso ◽  
Paula Brando de Medeiros ◽  
Nicollas Breda Lehmann ◽  
Elisabeth de Aguiar Bertaglia ◽  
...  

Abstract This study evaluated the potential of alternative treatments against larval stages of Lernaea cypriancea. For in vitro test, the nanoemulsified oils of Pinus sp. acicule and resin were evaluated, along with Biogermex® (commercial product based on citrus biomass). For this, the motility of five larvae of the same stage (nauplii or copepodite) were evaluated in a 96-well microplate. Using the best results, on the in vivo test, fries of Rhamdia quelen were submitted to a long-term immersion bath (96 h) containing different concentrations of the product diluted directly in the water. It was possible to notice the antiparasitic potential of the resin and the acicule of Pinus sp., as well as the citrus biomass extract against the parasites. The nanoemulsified oils successfully inhibited the development of nauplii (10 mg L− 1 in 24 h) and the fries showed to be tolerant to the presence of the compound (LC50 96h − 16.74 mg L− 1). The concentration of 30.5 mg L− 1 of Biogermex® eliminated the copepodites within 24 h, being more efficient than Pinus sp. when tested at the same stage, at the times analyzed. The results obtained indicate a potential use of these compounds as prophylactic agents against L. cyprinacea.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pilar Valderrama ◽  
Thomas G. Wilson Jr

Purpose. Peri-implantitis is one of the major causes of implant failure. The detoxification of the implant surface is necessary to obtain reosseointegration. The aim of this review was to summarize in vitro and in vivo studies as well as clinical trials that have evaluated surgical approaches for detoxification of the implant body surfaces.Materials and Methods. A literature search was conducted using MEDLINE (PubMed) from 1966 to 2013. The outcome variables were the ability of the therapeutic method to eliminate the biofilm and endotoxins from the implant surface, the changes in clinical parameters, radiographic bone fill, and histological reosseointegration.Results. From 574 articles found, 76 were analyzed. The findings, advantages, and disadvantages of using mechanical, chemical methods and lasers are discussed.Conclusions. Complete elimination of the biofilms is difficult to achieve. All therapies induce changes of the chemical and physical properties of the implant surface. Partial reosseointegration after detoxification has been reported in animals. Combination protocols for surgical treatment of peri-implantitis in humans have shown some positive clinical and radiographic results, but long-term evaluation to evaluate the validity and reliability of the techniques is needed.


1987 ◽  
Author(s):  
J A Páramo ◽  
B Cuesta ◽  
M Hernrnández ◽  
J Fernrnández ◽  
M J Paloma ◽  
...  

In vitro and in vivo studies have shown that endotoxin induces a marked increase in plasma plasminogen activator inhibitor (PAI) activity. Plasma PAI and endotoxin concentration (limulus lysate chromo-genic peptide substrate) were determined in 61 patients with sepsis: temperature greater than 38° and either positive blood cultures (n= 32) or negative blood cultures in neutropenic patients. Thirty age-matched healthy subjects served as control group.There was a marked increase in PAI in patients (7.1±10.5 U/ml) as compared to controls (0.9±0.8 U/ml) with statistical differences (p<0.002). Mean endotoxin concentrations in patients was 1779 pg/ml (Ref. = no detectable). PAI concentration was significantly higher in patients with positive blood cultures (p<0.009). Such an increase was higher in patients with Gram-negative bacteria (n= 26) than in those with Gram-positive bacteria (n= 6), but without statistical differences. The highest PAI concentration was found in 9 patients with disseminated intravascular coagulaition (DIC) as compared with those without DIC (p<0.002). No correlation was found between PAI and endotoxin concentrations.We conclude that there is a marked increase of PAI activity in septicaemia which may contribute to the pathogenesis of DIC-associated sepsis.


1998 ◽  
Vol 5 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Herbert H. Engelhard

Background: Antisense oligodeoxynucleotides (ODNs) have been proposed as a new therapy for patients with cancer, including malignant brain tumors. Antisense ODNs are taken up by tumor cells and selectively block gene expression. Use of ODNs for brain tumors is attractive due to their theoretical specificity, relative ease of production and, to date, paucity of reported adverse effects. This article presents current information regarding antisense ODNs and their possible future use for the treatment of brain tumors. Methods: The available published experimental and clinical information regarding antisense ODN treatment of glioblastoma cells and administration into the central nervous system (CNS) was reviewed. Other clinically relevant information pertaining to the molecular biology of antisense ODNs was also collected and summarized. Results: Targets for antisense ODN therapy in malignant glioma cells have included c-myc, c-myb, c-sis, c-erb B, CD44, p34cdc2, bFGF, PDGF, TGF-beta, IGF-1, PKC-alpha tumor necrosis factor, urokinase, and S100beta protein. Few in vivo studies of ODN treatment of brain tumors have yet been reported. Systemically administered ODNs enter the brain only in extremely small quantities; therefore, microinfusion into the brain has been recommended. Conclusions: Antisense ODNs have been used successfully to block glioblastoma gene expression in vitro and expression of multiple genes within the CNS of experimental animals. Upcoming clinical trials will address the safety of antisense ODN use against malignant brain tumors.


2010 ◽  
Vol 298 (3) ◽  
pp. G395-G401 ◽  
Author(s):  
Geetu Raheja ◽  
Varsha Singh ◽  
Ke Ma ◽  
Redouane Boumendjel ◽  
Alip Borthakur ◽  
...  

Clinical efficacy of probiotics in treating various forms of diarrhea has been clearly established. However, mechanisms underlying antidiarrheal effects of probiotics are not completely defined. Diarrhea is caused either by decreased absorption or increased secretion of electrolytes and solutes in the intestine. In this regard, the electroneutral absorption of two major electrolytes, Na+ and Cl−, occurs mainly through the coupled operation of Na+/H+ exchangers and Cl−/OH− exchangers. Previous studies from our laboratory have shown that Lactobacillus acidophilus (LA) acutely stimulated Cl−/OH− exchange activity via an increase in the surface levels of the apical anion exchanger SLC26A3 (DRA). However, whether probiotics influence SLC26A3 expression and promoter activity has not been examined. The present studies were, therefore, undertaken to investigate the long-term effects of LA on SLC26A3 expression and promoter activity. Treatment of Caco-2 cells with LA for 6–24 h resulted in a significant increase in Cl−/OH− exchange activity. DRA mRNA levels were also significantly elevated in response to LA treatment starting as early as 8 h. Additionally, the promoter activity of DRA was increased by more than twofold following 8 h LA treatment of Caco-2 cells. Similar to the in vitro studies, in vivo studies using mice gavaged with LA also showed significantly increased DRA mRNA (∼4-fold) and protein expression in the colonic regions as assessed by Western blot analysis and immunofluorescence. In conclusion, increase in DRA promoter activity and expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of LA.


Author(s):  
Francesca Gorini ◽  
Elisa Bustaffa ◽  
Alessio Coi ◽  
Giorgio Iervasi ◽  
Fabrizio Bianchi

Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.


Sign in / Sign up

Export Citation Format

Share Document