scholarly journals Platycodin D Suppresses Type 2 Porcine Reproductive and Respiratory Syndrome Virus In Primary and Established Cell Lines

Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 657 ◽  
Author(s):  
Mingxin Zhang ◽  
Taofeng Du ◽  
Feixiang Long ◽  
Xia Yang ◽  
Yankuo Sun ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pork industry as it continues to cause significant economic loss worldwide. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Consequently, there is an urgent need to develop new antiviral strategies. Platycodin D (PD) is one of the major bioactive triterpenoid saponins derived from Platycodon grandiflorum, a traditional Chinese medicine used as an expectorant for pulmonary diseases and a remedy for respiratory disorders. Here, we demonstrate that PD exhibits potent activity against PRRSV infection in Marc-145 cells and primary porcine alveolar macrophages. PD exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV GD-HD strain and GD-XH strain as well as classical CH-1a and VR2332 strains. PD at concentrations ranging 1–4 μM significantly inhibited PRRSV RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. EC50 values of PD against four tested PRRSV strains infection in Marc-145 cells ranged from 0.74 to 1.76 μM. Mechanistically, PD inhibited PRRSV replication by directly interacting with virions therefore affecting multiple stages of the virus life cycle, including viral entry and progeny virus release. In addition, PD decreased PRRSV- and LPS-induced cytokine (IFN-α, IFN-β, IL-1α, IL-6, IL-8 and TNF-α) production in PAMs. Altogether, our findings suggested that PD is a potent inhibitor of PPRSV infection in vitro. However, further in vivo studies are necessary to confirm PD as a potential novel and effective PPRSV inhibitor in swine.

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 887
Author(s):  
Amina Khatun ◽  
Sun Park ◽  
Nadeem Shabir ◽  
Salik Nazki ◽  
A-Rum Kang ◽  
...  

DiNap [(E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs. Therefore, a pharmacological intervention may represent an alternative control measure for PRRSV infection. Hence, the present study evaluated the effects of DiNap on the replication of VR2332 (a prototype strain of type 2 PRRSV). Initially, in vitro antiviral assays against VR2332 were performed in MARC-145 cells and porcine alveolar macrophages (PAMs). Following this, a pilot study was conducted in a pig model to demonstrate the effects of DiNap following VR2332 infection. DiNap inhibited VR2332 replication in both cell lines in a dose-dependent manner, and viral growth was completely suppressed at concentrations ≥0.06 mM, without significant cytotoxicity. Consistent with these findings, in the pig study, DiNap also reduced viral loads in the serum and lungs and enhanced the weight gain of pigs following VR2332 infection, as indicated by comparison of the DiNap-treated groups to the untreated control (NC) group. In addition, DiNap-treated pigs had fewer gross and microscopic lesions in their lungs than NC pigs. Notably, virus transmission was also delayed by approximately 1 week in uninfected contact pigs within the same group after treatment with DiNap. Taken together, these results suggest that DiNap has potential anti-PRRSV activity and could be useful as a prophylactic or post-exposure treatment drug to control PRRSV infection in pigs.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 188 ◽  
Author(s):  
Filip Vlavcheski ◽  
Mariah Young ◽  
Evangelia Tsiani

Insulin resistance, a pathological condition characterized by defects in insulin action leads to the development of Type 2 diabetes mellitus (T2DM), a disease which is currently on the rise that pose an enormous economic burden to healthcare systems worldwide. The current treatment and prevention strategies are considerably lacking in number and efficacy and therefore new targeted therapies and preventative strategies are urgently needed. Plant-derived chemicals such as metformin, derived from the French lilac, have been used to treat/manage insulin resistance and T2DM. Other plant-derived chemicals which are not yet discovered, may have superior properties to prevent and manage T2DM and thus research into this area is highly justifiable. Hydroxytyrosol is a phenolic phytochemical found in olive leaves and olive oil reported to have antioxidant, anti-inflammatory, anticancer and antidiabetic properties. The present review summarizes the current in vitro and in vivo studies examining the antidiabetic properties of hydroxytyrosol and investigating the mechanisms of its action.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2600 ◽  
Author(s):  
Luna Ge ◽  
Yazhou Cui ◽  
Kai Cheng ◽  
Jinxiang Han

Isopsoralen (IPRN), one of the main effective ingredients in Psoralea corylifolia Linn, has a variety of biological effects, including antiosteoporotic effects. In vivo studies show that IPRN can increase bone strength and trabecular bone microstructure in a sex hormone deficiency-induced osteoporosis model. However, the mechanism underlying this osteogenic potential has not been investigated in detail. In the present study, we investigated the molecular mechanism of IPRN-induced osteogenesis in MC3T3-E1 cells. Isopsoralen promoted osteoblast differentiation and mineralization, increased calcium nodule levels and alkaline phosphatase (ALP) activity and upregulated osteoblast markers, including ALP, runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 chain (COL1A1). Furthermore, IPRN limited the nucleocytoplasmic shuttling of aryl hydrocarbon receptor (AhR) by directly binding to AhR. The AhR target gene cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was also inhibited in vitro and in vivo. This effect was inhibited by the AhR agonists indole-3-carbinol (I3C) and 3-methylcholanthrene (3MC). Moreover, IPRN also increased estrogen receptor alpha (ERα) expression in an AhR-dependent manner. Taken together, these results suggest that IPRN acts as an AhR antagonist and promotes osteoblast differentiation via the AhR/ERα axis.


2019 ◽  
Vol 39 (04) ◽  
pp. 392-397
Author(s):  
Wei Wang ◽  
Songqing Lai ◽  
ZiJin Xiao ◽  
Haiyue Yan ◽  
Yongxi Li ◽  
...  

AbstractPlatelets play a crucial role in haemostasis and several pathophysiological processes. Collagen is a main initiator for platelet activation and aggregation. Given that Wnt signalling negatively regulates platelet function, and IWR-1 (a small molecule inhibitor for Wnt signalling) has the potential of inhibiting collagen synthesis, it is essential to investigate whether IWR-1 regulates collagen-induced platelet activation and protects against thrombogenesis. In the present study we found that IWR-1 pretreatment effectively suppressed collagen-induced platelet aggregation in a dose-dependent manner. In addition, IWR-1 also resulted in a decrease of P-selectin and phosphatidylserine surface exposure using fluorescence-activated cell sorting analysis. In vitro studies further revealed that IWR-1 had a negative effect on integrin a2β1 activation and platelet spreading. More importantly, the results from in vivo studies showed that IWR-1 exhibited a robust bleeding diathesis in the tail-bleeding assay and a prolonged occlusion time in the FeCl3-induced carotid injury model. Taken together, current results demonstrate that IWR-1 could effectively block collagen-induced platelet activity in vitro and in vivo, and suggest its candidacy as a new antiplatelet agent.


1992 ◽  
Vol 263 (2) ◽  
pp. G230-G239 ◽  
Author(s):  
M. J. Vassallo ◽  
M. Camilleri ◽  
C. M. Prather ◽  
R. B. Hanson ◽  
G. M. Thomforde

Our aim was to measure axial forces in the stomach and to evaluate their relation to circumferential contractions of the gastric walls and the emptying of gastric content. We used a combination of simultaneous radioscintigraphy, gastroduodenal manometry, and an axial force transducer with an inflatable 2-ml balloon fluoroscopically placed in the antrum. In vitro studies demonstrated that the axial force transducer records only antegrade forces along the longitudinal axis of this probe in an intensity-dependent manner. In vivo studies were performed in five healthy subjects for at least 3 h after ingestion of radiolabeled meals. When administered separately, the emptying of liquids or solids from the stomach is associated with generation of antral axial forces and coincident phasic pressure activity; however, almost 20% (average) of gastric axial forces during emptying of liquids or solids are unassociated with proximal or distal antral pressure activity ("isolated" forces). High amplitude antral axial forces and pressures occur during both lag and postlag emptying phases. During emptying of liquids, there is a trend for axial forces to be coincident more often with proximal than with distal antral pressure activity and vice versa for the emptying of solids (P = 0.015). These data suggest that when placed in the antrum, the transducer can semiquantitatively record axial forces during gastric emptying. By combining these observations with the data from in vitro studies, it appears that axial forces predominantly result from traction on the balloon by the longitudinal vector resulting from circumferential gastric contractions. The combination of radioscintigraphy and measurement of antral axial forces is a promising method to evaluate mechanical forces involved in the emptying of the human stomach.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1234-1234 ◽  
Author(s):  
Laura M. De Castro ◽  
Jude C. Jonassaint ◽  
Jennifer G. Johnson ◽  
Milena Batchvarova ◽  
Marilyn J. Telen

Abstract Sickle red blood cells (SS RBC) are abnormally adhesive to both endothelial cells (ECs) and components of the extracellular matrix (ECM). Epinephrine (epi) has been shown to elevate cAMP in SS RBC and increase adhesion of SS RBC to ECs in a protein kinase A-dependent manner. In vitro and in vivo studies performed in our lab have led to the hypothesis that adrenergic stimuli such as epi may initiate or exacerbate vaso-occlusion and thus contribute to the association of vaso-occlusive events with physiologic stress. We are conducting a prospective, dose-escalation pilot clinical study to investigate whether in vivo administration of one dose of propranolol either down-regulates baseline SS RBC adhesion in vitro or prevents its upregulation by epi. In addition, this study will provide additional safety data regarding the use of propranolol in normotensive patients with sickle cell disease (SCD). Figure Figure To date, we have completed the first two dose cohorts. 11 subjects (9 SS and 1 Sβ° thalassemia; 7 females, 3 males) have participated. No severe adverse events were noted. Cohorts 1 and 2 had mean pre-propranolol blood pressure (BP) of 116 (5.9 SD)/ 60.4 (3.98 SD) and 106.8 (4.68 SD)/ 58 (3.9 SD), respectively; this difference was not statistically significant. Minimal and asymptomatic changes in BP were noted in both cohorts after drug administration, with biphasic systolic and diastolic BP nadirs at 45 and 240 minutes. No clinically significant changes in heart rate were observed. Adhesion studies were performed using a graduated height flow chamber on the day of RBC collection. RBC adhesion to ECs was studied before and after epi stimulation and was measured at sheer stresses ranging from 1 to 3 dyne/cm2. Baseline adhesion measurements were validated by comparing percent (%) adhesion assayed at 2 different times within 7 days—at screening and before propranolol dose on the study drug day. We observed no significant difference in adhesion at the 2 different time points without propranolol. Comparison of % adhesion of epi-stimulated RBC to ECs before and 1 hour after propranolol showed that propranolol given in vivo significantly inhibited both non-stimulated and epi-stimulated SS RBC adhesion (p=0.04 and p=0.001, respectively). Lastly, comparison of SS RBC adhesion at both drug doses confirmed the drug-related inhibition of adhesion (p&lt;0.004). We conclude that propranolol administered in vivo decreases SS RBC baseline adhesion to ECs and substantially abrogates epi-stimulated adhesion to ECs, as measured in vitro. Although we have thus far studied only a small number of patients and low propranolol doses, we expect to confirm these results with the 3rd cohort, in which a higher dose of propranolol will be used. If our findings continue to show that propranolol can decrease both SS RBC baseline and epi-stimulated adhesion to ECs, study of propranolol on a larger scale would be warranted in order to ascertain its safety and efficacy as an anti-adhesive therapy in SCD.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4365-4373 ◽  
Author(s):  
Christiane Otto ◽  
Anna Särnefält ◽  
Anne Ljungars ◽  
Siegmund Wolf ◽  
Beate Rohde-Schulz ◽  
...  

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


2018 ◽  
Author(s):  
Jung Ok Lee ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Jeong Ah Han ◽  
Min Ju Kang ◽  
...  

AbstractMeteorin-like (metrnl) is a recently identified adipomyokine that has beneficial effects on glucose metabolism. However, its underlying mechanism of action is not completely understood. In this study, we have shown that a level of metrnl increase in vitro under electrical-pulse-stimulation (EPS) and in vivo in exercise mice, suggesting that metrnl is an exercise-induced myokine. In addition, metrnl increases glucose uptake through the calcium-dependent AMPK pathway. Metrnl also increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPK-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. The intraperitoneal injection of recombinant metrnl improves glucose tolerance in mice with high fat-induced obesity or type 2 diabetes (db/db), but this is not seen in AMPK β1β2 muscle-specific null mice (AMPK β1β2 MKO). In conclusion, we have demonstrated that metrnl induces beneficial effects on glucose metabolism via AMPK and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document