Fuel selection during short-term submaximal treadmill exercise in the cold is not affected by pre-exercise low-intensity shivering

2014 ◽  
Vol 39 (3) ◽  
pp. 282-291 ◽  
Author(s):  
Dominique D. Gagnon ◽  
Hannu Rintamäki ◽  
Sheila S. Gagnon ◽  
Juha Oksa ◽  
Katja Porvari ◽  
...  

Exercise and shivering rely on different metabolic pathways and consequently, fuel selection. The present study examined the effects of a pre-exercise low-intensity shivering protocol on fuel selection during submaximal exercise in a cold environment. Nine male subjects exercised 4 times for 60 min at 50% (LOW) or 70% (MOD) of their peak oxygen consumption on a motorized treadmill in a climatic chamber set at 0 °C with (SHIV) and without (CON) a pre-exercise cooling protocol, inducing low-intensity shivering. Thermal, cardiorespiratory and metabolic responses were measured every 15 min whereas blood samples were collected every 30 min to assess serum nonesterified fatty acids (NEFA), glycerol, glucose, β-hydroxybutyrate (BHB) and plasma catecholamine concentrations. Rectal and skin temperatures were lower in the SHIV condition, within LOW and MOD conditions, during the first 45 min of exercise. Norepinephrine (NE) concentration was greater in SHIV vs. CON within LOW (1.39 ± 0.17 vs. 0.98 ± 0.17 ng·mL−1) and MOD (1.50 ± 0.20 vs. 1.01 ± 0.09 ng·mL−1), whereas NEFA, glycerol and BHB were greater in SHIV vs. CON (1060 ± 49 vs. 898 ± 78 μmol·L−1; 0.27 ± 0.02 vs. 0.22 ± 0.03 mmol·L−1; 0.39 ± 0.06 vs. 0.27 ± 0.04 mmol·L−1, respectively) within MOD only. No changes were observed in fat or carbohydrate oxidation between SHIV and CON during exercise. Despite increases in NE, NEFA, glycerol and BHB from pre-exercise low-intensity shivering, fuel selection during short-term submaximal exercise in the cold was unaltered.

1994 ◽  
Vol 86 (1) ◽  
pp. 35-41 ◽  
Author(s):  
E. Carstensen ◽  
John S. Yudkin

1. Four studies were designed to test the hypothesis that platelet catecholamine levels may provide a stable index of circulating plasma catecholamine concentrations, and that these are unaffected by acute elevations of plasma levels with physical and psychological stress. 2. To assess the biological variability within individuals, ten subjects were sampled on five occasions over 8–30 h. The intra-individual coefficients of variation for plasma and platelet noradrenaline levels were 193 +10% and 9.5 +4.2%, respectively, and for plasma and platelet adrenaline levels 48.3 +22% and 25.3 +8.4%, respectively. 3. Three other studies investigating the response to physical and psychological stress were performed. In the first study, plasma and platelet catecholamine levels were studied in 12 healthy subjects before and after bicycle ergometry. Plasma catecholamine concentrations increased [noradrenaline by +346 + 323% (P = 0.002) and adrenaline by +314 + 352% (P -0.003)], whereas platelet concentrations showed little change [noradrenaline +4+18% (P = 0.94) and adrenaline +38+ 116% (P = 0.67)]. 4. In the study, catecholamine concentrations were measured in eight subjects after hand immersion in iced water. Plasma noradrenaline concentrations increased significantly (+58 +19%, P = 0.001), but no significant change was found in plasma adrenaline concentrations (+8+44%, P = 0.48). Platelet catecholamine concentrations showed no significant change (noradrenaline +15 +15%, P = 0.052, and adrenaline 19 +82%, P = 0.84). 5. In the third study, catecholamine concentrations were measured in 22 medical students before and after their end-of-year examination. There was no significant change in plasma noradrenaline or adrenaline concentrations (+20 +39%, P = 0.08, and −2 +33%, P = 0.36, respectively) nor in platelet concentrations (noradrenaline +6+19%, P = 0.15, and adrenaline +34 +72, P = 0.65). 6. In 53 subjects sampled between 08.00 and 12.00 hours, plasma and platelet noradrenaline concentrations were significantly correlated (r, = 0.47, P <0.001), but the relationship between plasma and platelet adrenaline concentrations in these subjects did not achieve significance (rs = 0.17, P <0.23). 7. In conclusion, platelet catecholamine concentrations seem to be unaffected by acute short-term stress and may provide a reliable indicator of chronic sympatho-adrenomedullary arousal.


1985 ◽  
Vol 59 (5) ◽  
pp. 1350-1354 ◽  
Author(s):  
D. S. King ◽  
D. L. Costill ◽  
W. J. Fink ◽  
M. Hargreaves ◽  
R. A. Fielding

The effect of heat acclimatization on aerobic exercise tolerance in the heat and on subsequent sprint exercise performance was investigated. Before (UN) and after (ACC) 8 days of heat acclimatization, 10 male subjects performed a heat-exercise test (HET) consisting of 6 h of intermittent submaximal [50% of the maximal O2 uptake] exercise in the heat (39.7 degrees C dB, 31.0% relative humidity). A 45-s maximal cycle ride was performed before (sprint 1) and after (sprint 2) each HET. Mean muscle glycogen use during the HET was lower following acclimatization [ACC = 28.6 +/- 6.4 (SE) and UN = 57.4 +/- 5.1 mmol/kg; P less than 0.05]. No differences were noted between the UN and ACC trials with respect to blood glucose, lactate (LA), or respiratory exchange ratio. During the UN trial only, total work output during sprint 2 was reduced compared with sprint 1 (24.01 +/- 0.80 vs. 21.56 +/- 1.18 kJ; P less than 0.05). This reduction in sprint performance was associated with an attenuated fall in muscle pH following sprint 2 (6.86 vs. 6.67, P less than 0.05) and a reduced accumulation of LA in the blood. These data indicate that heat acclimatization produced a shift in fuel selection during submaximal exercise in the heat. The observed sparing of muscle glycogen may be associated with the enhanced ability to perform highly intense exercise following prolonged exertion in the heat.


1988 ◽  
Vol 60 (02) ◽  
pp. 251-254 ◽  
Author(s):  
S E Kjeldsen ◽  
K Gjesdal ◽  
P Leren ◽  
I K Eide

SummaryThe content of free-catecholamines in blood platelets is much higher than in plasma and platelet catecholamines must be taken up from plasma, since platelets lack the enzymes for catecholamine synthesis. There is some evidence that platelet catecholamine content under certain circumstances may be an integrated measure of plasma catecholamine concentrations over time. Platelet-free catecholamines were therefore assayed in 18 untreated patients with essential hypertension and in 16 normotensive control subjects. Mean platelet-free dopamine in the hypertensive group was 3.7 ± 0.4 pg/mg platelet weight, i.e. significantly less than the 6.5 ± 0.9 pg/mg found in the normotensive (p <0.005). Platelet contents of noradrenaline and adrenaline did not differ. Decreased platelet-free dopamine and unchanged platelet noradrenaline and adrenaline persisted after adjustment for increased body weight in the hypertensive group. Although the reasons for decreased platelet-free dopamine in the hypertensive group remain unknown, this finding may add to previous result showing facilitated release of granular contents from blood platelets in patients with essential hypertension. Our data do not support platelet levels of free-catecholamines to be a marker of increased sympathetic tone in essential hypertension.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J.P Dias Ferreira Reis ◽  
A Goncalves ◽  
P Bras ◽  
V Ferreira ◽  
J Viegas ◽  
...  

Abstract Background Peak oxygen consumption (pVO2) is a key parameter in assessing the prognosis of heart failure with reduced ejection fraction (HFrEF) patients (pts). However, it is a less reliable parameter when the cardiopulmonary exercise test (CPET) is not maximal. It is crucial to identify the submaximal exercise variables with the best prognostic power (PP), in order to improve the management of pts that cannot attain a maximal CPET. Purpose The aim of this study was to evaluate and compare the PP of several exercise parameters in submaximal CPET for risk stratification in pts with HFrEF. Methods Prospective evaluation of adult pts with HFrEF submitted to CPET in a tertiary center. A submaximal CPET was defined by a respiratory exchange ratio (RER) ≤1.10. Pts were followed up for at least 1 year for the primary endpoint of cardiac death and urgent heart transplantation/ ventricular assist device implantation. Several CPET parameters were analyzed as potential predictors of the combined endpoint and their PP (area under the curve - AUC) was compared to that of pVO2, using the Hanley and McNeil test. Results CPET was performed in 487 HF pts, of which 317 (66%) performed a submaximal CPET. Pts averaged 57±12 years of age, 77% were male, 45.7% had ischemic cardiomyopathy, with a mean LVEF of 30.4±7.6%, a mean heart failure survival score of 8.6±1.1. The mean pVO2 was 17.1±5.5 ml/kg/min and the mean RER 1.01±0.08. During a mean follow-up (FU) time of 11±1 months, 18 pts (6%) met the primary endpoint. Cardiorespiratory optimal point (OP - VE/VO2) had the highest AUC value (0.915, p=0.001), followed by the partial pressure of end-tidal CO2 at the anaerobic threshold - PETCO2L (0.814, p&lt;0.001). pVO2 presented an AUC of 0.730 (p=0.001). OP≥31 and PETCO2L ≤37mmHg had a sensitivity of 100 and 76.9% and a specificity of 71.1 and 67%, respectively, for the primary outcome. OP presented a significantly higher PP than pVO2 (p=0.048), whether PETCO2L didn't achieve any statistical significance (p=0.164). Pts with anOP≥31 presented a significantly lower survival free of HT during FU (log rank p=0.002). Conclusion OP had the highest PP for HF events of all parameters analyzed for a submaximal CPET. This parameter can help stratify the HF pts physiologically unable to reach a peak level of exercise. Funding Acknowledgement Type of funding source: None


1988 ◽  
Vol 22 (3) ◽  
pp. 202-204 ◽  
Author(s):  
Merlin V. Nelson ◽  
Vickie Tutag-Lehr ◽  
R. Lee Evans

Nine normal, healthy male subjects had significantly elevated thyroid-stimulating hormone (TSH) concentrations while receiving oral lithium carbonate for two weeks. The mean minimum lithium serum concentration was 0.765 mEq/L. The TSH concentrations after 15 days on lithium were significantly correlated to the TSH concentration at baseline. No correlation was found between mean minimum lithium steady-state concentration and TSH concentration after 15 days on lithium. Further research is necessary to determine if a high baseline TSH concentration or an early rise in TSH will predict those patients who will eventually develop hypothyroidism after long-term lithium therapy.


1984 ◽  
Vol 57 (4) ◽  
pp. 1030-1033 ◽  
Author(s):  
D. R. Seals ◽  
B. F. Hurley ◽  
J. Schultz ◽  
J. M. Hagberg

Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61–67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65–90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.


1999 ◽  
Vol 276 (5) ◽  
pp. E828-E835 ◽  
Author(s):  
Jeffrey F. Horowitz ◽  
Ricardo Mora-Rodriguez ◽  
Lauri O. Byerley ◽  
Edward F. Coyle

This study determined the effect of carbohydrate ingestion during exercise on the lipolytic rate, glucose disappearance from plasma (Rd Glc), and fat oxidation. Six moderately trained men cycled for 2 h on four separate occasions. During two trials, they were fed a high-glycemic carbohydrate meal during exercise at 30 min (0.8 g/kg), 60 min (0.4 g/kg), and 90 min (0.4 g/kg); once during low-intensity exercise [25% peak oxygen consumption (V˙o 2 peak)] and once during moderate-intensity exercise (68%V˙o 2 peak). During two additional trials, the subjects remained fasted (12–14 h) throughout exercise at each intensity. After 55 min of low-intensity exercise in fed subjects, hyperglycemia (30% increase) and a threefold elevation in plasma insulin concentration ( P < 0.05) were associated with a 22% suppression of lipolysis compared with when subjects were fasted (5.2 ± 0.5 vs. 6.7 ± 1.2 μmol ⋅ kg−1 ⋅ min−1, P < 0.05), but fat oxidation was not different from fasted levels at this time. Fat oxidation when subjects were fed carbohydrate was not reduced below fasting levels until 80–90 min of exercise, and lipolysis was in excess of fat oxidation at this time. The reduction in fat oxidation corresponded in time with the increase in Rd Glc. During moderate-intensity exercise, the very small elevation in plasma insulin concentration (∼3 μU/ml; P < 0.05) during the second hour of exercise when subjects were fed vs. when they were fasted slightly attenuated lipolysis ( P < 0.05) but did not increase Rd Glc or suppress fat oxidation. These findings indicate that despite a suppression of lipolysis after carbohydrate ingestion during exercise, the lipolytic rate remained in excess and thus did not limit fat oxidation. Under these conditions, a reduction in fat oxidation was associated in time with an increase in glucose uptake.


Sign in / Sign up

Export Citation Format

Share Document