Effects of cold water immersion on circulating inflammatory markers at the Kona Ironman World Championship

Author(s):  
Jenna M Bartley ◽  
Rebecca L Stearns ◽  
Colleen Munoz ◽  
Julie K. Nolan ◽  
Shlomit Radom-Aizik ◽  
...  

Cold water immersion (CWI) purportedly reduces inflammation and improves muscle recovery post exercise, yet its effectiveness in specific contexts (ultraendurance) remains unclear. Thus, our aim was to study hematological profiles, systemic inflammation, and muscle damage responses to a specific post race CWI (vs. control) during recovery after the Ironman® World Championship, a culmination of ~100,000 athletes competing in global qualifying Ironman® events each year. Twenty-nine competitors were randomized into CWI or control (CON) group. Physiological parameters and blood samples were taken pre race (BASE), after intervention (POST), and 24 (+1DAY) and 48 hours (+2DAY) following the race. Muscle damage markers (plasma myoglobin, serum creatine kinase) were elevated at POST, +1DAY, and +2DAY, while inflammatory cytokines IL-6, IL-8, and IL-10 and total leukocyte counts were increased only at POST. CWI had no effect on these markers. Numbers of the most abundant circulating cell type, neutrophils, were elevated at POST more so in CWI (p<0.05, vs. CON). Despite that neutrophil counts may be a sensitive marker to detect subtle effects, CWI does not affect recovery markers 24- and 48-hours post race (vs. CON). Overall, we determine that our short CWI protocol was not sufficient to improve recovery. Novelty: • Ironman World Championship event increased circulating muscle damage markers, inflammatory markers, and hematological parameters, including circulating immune cell sub-populations that recover 24-48 hours after the race. • 12-min CWI post ultraendurance event affects the absolute numbers of neutrophils acutely, post race (vs. CON), but does not impact recovery 24- and 48-hours post race.

2018 ◽  
Vol 21 (8) ◽  
pp. 846-851 ◽  
Author(s):  
Rebecca L. Stearns ◽  
Julie K. Nolan ◽  
Robert A. Huggins ◽  
Carl M. Maresh ◽  
Colleen X. Munõz ◽  
...  

2016 ◽  
Vol 51 (7) ◽  
pp. 540-549 ◽  
Author(s):  
Líllian Beatriz Fonseca ◽  
Ciro J. Brito ◽  
Roberto Jerônimo S. Silva ◽  
Marzo Edir Silva-Grigoletto ◽  
Walderi Monteiro da Silva ◽  
...  

Context: Cold-water immersion (CWI) has been applied widely as a recovery method, but little evidence is available to support its effectiveness. Objective: To investigate the effects of CWI on muscle damage, perceived muscle soreness, and muscle power recovery of the upper and lower limbs after jiu-jitsu training. Design: Crossover study. Setting: Laboratory and field. Patients or Other Participants: A total of 8 highly trained male athletes (age = 24.0 ± 3.6 years, mass = 78.4 ± 2.4 kg, percentage of body fat = 13.1% ± 3.6%) completed all study phases. Intervention(s): We randomly selected half of the sample for recovery using CWI (6.0°C ± 0.5°C) for 19 minutes; the other participants were allocated to the control condition (passive recovery). Treatments were reversed in the second session (after 1 week). Main Outcome Measure(s): We measured serum levels of creatine phosphokinase, lactate dehydrogenase (LDH), aspartate aminotransferase, and alanine aminotransferase enzymes; perceived muscle soreness; and recovery through visual analogue scales and muscle power of the upper and lower limbs at pretraining, postrecovery, 24 hours, and 48 hours. Results: Athletes who underwent CWI showed better posttraining recovery measures because circulating LDH levels were lower at 24 hours postrecovery in the CWI condition (441.9 ± 81.4 IU/L) than in the control condition (493.6 ± 97.4 IU/L; P = .03). Estimated muscle power was higher in the CWI than in the control condition for both upper limbs (757.9 ± 125.1 W versus 695.9 ± 56.1 W) and lower limbs (53.7 ± 3.7 cm versus 35.5 ± 8.2 cm; both P values = .001). In addition, we observed less perceived muscle soreness (1.5 ± 1.1 arbitrary units [au] versus 3.1 ± 1.0 au; P = .004) and higher perceived recovery (8.8 ± 1.9 au versus 6.9 ± 1.7 au; P = .005) in the CWI than in the control condition at 24 hours postrecovery. Conclusions: Use of CWI can be beneficial to jiu-jitsu athletes because it reduces circulating LDH levels, results in less perceived muscle soreness, and helps muscle power recovery at 24 hours postrecovery.


2019 ◽  
Vol 30 (3) ◽  
pp. 485-495
Author(s):  
Erich Hohenauer ◽  
Joseph T. Costello ◽  
Tom Deliens ◽  
Peter Clarys ◽  
Rahel Stoop ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Maxime Chauvineau ◽  
Florane Pasquier ◽  
Vincent Guyot ◽  
Anis Aloulou ◽  
Mathieu Nedelec

Introduction: The aim of the present study was to investigate the effect of the depth of cold water immersion (CWI) (whole-body with head immersed and partial-body CWI) after high-intensity, intermittent running exercise on sleep architecture and recovery kinetics among well-trained runners.Methods: In a randomized, counterbalanced order, 12 well-trained male endurance runners (V.O2max = 66.0 ± 3.9 ml·min−1·kg−1) performed a simulated trail (≈18:00) on a motorized treadmill followed by CWI (13.3 ± 0.2°C) for 10 min: whole-body immersion including the head (WHOLE; n = 12), partial-body immersion up to the iliac crest (PARTIAL; n = 12), and, finally, an out-of-water control condition (CONT; n = 10). Markers of fatigue and muscle damage—maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ), plasma creatine kinase [CK], and subjective ratings—were recorded until 48 h after the simulated trail. After each condition, nocturnal core body temperature (Tcore) was measured, whereas sleep and heart rate variability were assessed using polysomnography.Results: There was a lower Tcore induced by WHOLE than CONT from the end of immersion to 80 min after the start of immersion (p &lt; 0.05). Slow-wave sleep (SWS) proportion was higher (p &lt; 0.05) during the first 180 min of the night in WHOLE compared with PARTIAL. WHOLE and PARTIAL induced a significant (p &lt; 0.05) decrease in arousal for the duration of the night compared with CONT, while only WHOLE decreased limb movements compared with CONT (p &lt; 0.01) for the duration of the night. Heart rate variability analysis showed a significant reduction (p &lt; 0.05) in RMSSD, low frequency (LF), and high frequency (HF) in WHOLE compared with both PARTIAL and CONT during the first sequence of SWS. No differences between conditions were observed for any markers of fatigue and muscle damage (p &gt; 0.05) throughout the 48-h recovery period.Conclusion: WHOLE reduced arousal and limb movement and enhanced SWS proportion during the first part of the night, which may be particularly useful in the athlete's recovery process after exercise. Future studies are, however, required to assess whether such positive sleep outcomes may result in overall recovery optimization.


2020 ◽  
Vol 12 (1) ◽  
pp. 236-241
Author(s):  
Saman Khakpoor Roonkiani ◽  
Mohsen Ebrahimi ◽  
Ali Shamsi Majelan

Summary Study aim: To investigate the effect of cold water immersion (CWI) on muscle damage indexes after simulated soccer activity in young soccer players. Material and methods: Eighteen professional male soccer players were randomly divided into two groups: CWI (n = 10, age 19.3 ± 0.5, body mass index 22.2 ± 1.3) and control (n = 8, age 19.4 ± 0.8, body mass index 21.7 ± 1.5). Both groups performed a simulated 90-minute soccer-specific aerobic field test (SAFT90). Then, the CWI group subjects immersed themselves for 10 minutes in 8°C water, while the control group subjects sat passively for the same time period. Blood samples were taken before, immediately after, 10 minutes, 24 hours and 48 hours after the training session in a fasted state. Blood lactate, creatine kinase (CK) and lactate dehydrogenase (LDH) enzyme levels were measured. Results: Lactate, CK and LDH levels increased significantly after training (p < 0.001). There were significant interactions between groups and subsequent measurements for CK (p = 0.0012) and LDH (p = 0.0471). There was no significant difference in lactate level between the two groups at any aforementioned time. Conclusion: It seems that CWI after simulated 90-minute soccer training can reduce the values of muscle damage indexes in soccer players.


Author(s):  
Junaidi JUNAIDI ◽  
Akhmad S. SOBARNA ◽  
Tirto A. APRIYANTO ◽  
Tommy A. APRIANTONO ◽  
Bagus W. WINATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document