scholarly journals Initialization of Thermal Models in Cold and Warm Permafrost

2021 ◽  
Author(s):  
Cameron Ross ◽  
Greg Siemens ◽  
Ryley Beddoe

Equilibrium modelling, also known as spin-up, is a technique for initializing a stable thermal regime in ground temperature models for permafrost regions. The results act as a baseline for subsequent transient analyses of ground temperature response to climate change or infrastructure. In practice, spin-up procedures are often loosely described or neglected, and the criteria by which a stable thermal regime is evaluated are rarely defined or presented explicitly. In this paper, model results show that no single criterion based on thresholds of inter-cycle temperature change can be used to identify a stable thermal regime in all spin-up scenarios. Results from simulations using a wide range of initialization temperatures and conditions show the number of spin-up cycles can range between 10 to 10,000, and a spin-up criterion as fine as 0.00001 <sup>o</sup>C/cycle is required to achieve a stable thermal regime suitable for deeper warm permafrost models. The implications of selected threshold criteria are examined in follow-up transient analyses and show that warm permafrost models can be highly sensitive to initial temperature profiles based on the criterion utilized. The results alert scientists and engineers to the importance of initialization on site-specific and regional permafrost models for transient ground temperature analyses.

2021 ◽  
Author(s):  
Cameron Ross ◽  
Ryley Beddoe ◽  
Greg Siemens

&lt;p&gt;Initialization (spin-up) of a numerical ground temperature model is a critical but often neglected step for solving heat transfer problems in permafrost. Improper initialization can lead to significant underlying model drift in subsequent transient simulations, distorting the effects on ground temperature from future climate change or applied infrastructure. &amp;#160;In a typical spin-up simulation, a year or more of climate data are applied at the surface and cycled repeatedly until ground temperatures are declared to be at equilibrium with the imposed boundary conditions, and independent of the starting conditions.&lt;/p&gt;&lt;p&gt;Spin-up equilibrium is often simply declared after a specified number of spin-up cycles. In few studies, equilibrium is visually confirmed by plotting ground temperatures vs spin-up cycles until temperatures stabilize; or is declared when a certain inter-cycle-temperature-change threshold is met simultaneously at all depths, such as &amp;#8710;T &amp;#8804; 0.01&lt;sup&gt;o&lt;/sup&gt;C per cycle. In this study, we investigate the effectiveness of these methods for determining an equilibrium state in a variety of permafrost models, including shallow and deep (10 &amp;#8211; 200 m), high and low saturation soils (S = 100 and S = 20), and cold and warm permafrost (MAGT = ~-10 &lt;sup&gt;o&lt;/sup&gt;C and &gt;-1 &lt;sup&gt;o&lt;/sup&gt;C). The efficacy of equilibrium criteria 0.01&lt;sup&gt;o&lt;/sup&gt;C/cycle and 0.0001&lt;sup&gt;o&lt;/sup&gt;C/cycle are compared. Both methods are shown to prematurely indicate equilibrium in multiple model scenarios. &amp;#160;Results show that no single criterion can programmatically detect equilibrium in all tested models, and in some scenarios can result in up to 10&lt;sup&gt;o&lt;/sup&gt;C temperature error or 80% less permafrost than at true equilibrium. &amp;#160;A combination of equilibrium criteria and visual confirmation plots is recommended for evaluating and declaring equilibrium in a spin-up simulation.&lt;/p&gt;&lt;p&gt;Long-duration spin-up is particularly important for deep (10+&amp;#160;m) ground models where thermal inertia of underlying permafrost slows the ground temperature response to surface forcing, often requiring hundreds or even thousands of spin-up cycles to establish equilibrium. Subsequent transient analyses also show that use of a properly initialized 100 m permafrost model can reduce the effect of climate change on mean annual ground temperature of cold permafrost by more than 1 &lt;sup&gt;o&lt;/sup&gt;C and 3 &lt;sup&gt;o&lt;/sup&gt;C under RCP2.6 and RCP8.5 climate projections, respectively, when compared to an identical 25 m model. These results have important implications for scientists, engineers and policy makers that rely on model projections of long-term permafrost conditions.&lt;/p&gt;


2018 ◽  
Vol 16 (05) ◽  
pp. 362-368 ◽  
Author(s):  
Federica Sullo ◽  
Agata Polizzi ◽  
Stefano Catanzaro ◽  
Selene Mantegna ◽  
Francesco Lacarrubba ◽  
...  

Cerebellotrigeminal dermal (CTD) dysplasia is a rare neurocutaneous disorder characterized by a triad of symptoms: bilateral parieto-occipital alopecia, facial anesthesia in the trigeminal area, and rhombencephalosynapsis (RES), confirmed by cranial magnetic resonance imaging. CTD dysplasia is also known as Gómez-López-Hernández syndrome. So far, only 35 cases have been described with varying symptomatology. The etiology remains unknown. Either spontaneous dominant mutations or de novo chromosomal rearrangements have been proposed as possible explanations. In addition to its clinical triad of RES, parietal alopecia, and trigeminal anesthesia, CTD dysplasia is associated with a wide range of phenotypic and neurodevelopmental abnormalities.Treatment is symptomatic and includes physical rehabilitation, special education, dental care, and ocular protection against self-induced corneal trauma that causes ulcers and, later, corneal opacification. The prognosis is correlated to the mental development, motor handicap, corneal–facial anesthesia, and visual problems. Follow-up on a large number of patients with CTD dysplasia has never been reported and experience is limited to few cases to date. High degree of suspicion in a child presenting with characteristic alopecia and RES has a great importance in diagnosis of this syndrome.


2021 ◽  
Vol 22 (9) ◽  
pp. 4626
Author(s):  
Clément Barbereau ◽  
Nicolas Cubedo ◽  
Tangui Maurice ◽  
Mireille Rossel

Tauopathies represent a vast family of neurodegenerative diseases, the most well-known of which is Alzheimer’s disease. The symptoms observed in patients include cognitive deficits and locomotor problems and can lead ultimately to dementia. The common point found in all these pathologies is the accumulation in neural and/or glial cells of abnormal forms of Tau protein, leading to its aggregation and neurofibrillary tangles. Zebrafish transgenic models have been generated with different overexpression strategies of human Tau protein. These transgenic lines have made it possible to highlight Tau interacting factors or factors which may limit the neurotoxicity induced by mutations and hyperphosphorylation of the Tau protein in neurons. Several studies have tested neuroprotective pharmacological approaches. On few-days-old larvae, modulation of various signaling or degradation pathways reversed the deleterious effects of Tau mutations, mainly hTauP301L and hTauA152T. Live imaging and live tracking techniques as well as behavioral follow-up enable the analysis of the wide range of Tau-related phenotypes from synaptic loss to cognitive functional consequences.


2021 ◽  
Vol 10 (2) ◽  
pp. 231
Author(s):  
Giacinto Triolo ◽  
Piero Barboni ◽  
Giacomo Savini ◽  
Francesco De Gaetano ◽  
Gaspare Monaco ◽  
...  

The introduction of anterior-segment optical-coherence tomography (AS-OCT) has led to improved assessments of the anatomy of the iridocorneal-angle and diagnoses of several mechanisms of angle closure which often result in raised intraocular pressure (IOP). Continuous advancements in AS-OCT technology and software, along with an extensive research in the field, have resulted in a wide range of possible parameters that may be used to diagnose and follow up on patients with this spectrum of diseases. However, the clinical relevance of such variables needs to be explored thoroughly. The aim of the present review is to summarize the current evidence supporting the use of AS-OCT for the diagnosis and follow-up of several iridocorneal-angle and anterior-chamber alterations, focusing on the advantages and downsides of this technology.


Synthesis ◽  
2021 ◽  
Author(s):  
Alexandre Desaintjean ◽  
Fanny Danton ◽  
Paul Knochel

A wide range of polyfunctionalized di(hetero)aryl- and dialkenyl-magnesium reagents were prepared in toluene within 10 to 120 min between −78 °C and 25 °C via an I/Mg- or Br/Mg-exchange reaction using reagents of the general formula R2Mg (R = sBu, Mes). Highly sensitive functional groups, such as a triazene or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of various functionalized (hetero)arenes and alkenes derivatives after quenching with several electrophiles including allyl bromides, acyl chlorides, aldehydes, ketones, and aryl iodides.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 279
Author(s):  
Kentaro Noda ◽  
Jian Sun ◽  
Isao Shimoyama

A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents. In this case, a sensor of small size that can measure all nine components of the tensor is required. In this study, a tensor sensor consisting of highly sensitive piezoresistive beams and a cantilever to measure all of the tensor components was developed using MEMS processes. The designed sensor had dimensions of 2.0 mm by 2.0 mm by 0.3 mm (length by width by thickness). The sensor chip was embedded in a 15 mm3 cubic polydimethylsiloxane (PDMS) (polydimethylsiloxane) elastic body and then calibrated to verify the sensor response to the stress tensor. We demonstrated that 6-axis normal and shear Cauchy stresses with 5 kPa in magnitudes can be measured by using the fabricated sensor.


2021 ◽  
Vol 10 (10) ◽  
pp. 2086
Author(s):  
Luís Mota ◽  
Ricardo Jorge Dinis-Oliveira

Argyria encompasses the different cosmetic alterations that can develop if enough silver particles deposit in a specific tissue, typically in the skin, ranging from localized dark-blue macules to a generalized slate-gray/bluish tinge following systemic absorption. This work aims to fully review the state of the art regarding pathophysiology, diagnosis, treatment, and relevant clinical and forensic features of argyria. Argyria has been diagnosed in a wide range of ages, both sexes and varied ethnicities, with no known individual predisposing factors. Ultraviolet radiation with subsequence increases of melanin production aggravates the discoloration due to a reduction in the silver deposits. Physical examination and silver exposure in the anamnesis can be highly suggestive of the diagnosis, but a histopathological analysis with Energy-Dispersive X-ray Spectroscopy is required to unequivocally determine the discoloration etiology. Safe and effective treatment has only been accomplished with laser techniques, though only a few cases have been reported and with limited follow-up time. In conclusion, argyria typically has an occupational or iatrogenic etiology. It should be suspected when a patient presents with typical skin or eye lesions. A seemingly viable treatment modality, with laser technology, is finally within the horizon.


2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 768
Author(s):  
Hyung-Mo Kim ◽  
Chiwoo Oh ◽  
Jaehyun An ◽  
Seungki Baek ◽  
Sungje Bock ◽  
...  

Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M–QD–SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M–QD–SNs, and a lateral flow immunoassay with the M–QD–SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/μL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M–QD–SNs.


Sign in / Sign up

Export Citation Format

Share Document