Low genetic diversity at allozyme loci in Juglans cinerea

2000 ◽  
Vol 78 (9) ◽  
pp. 1238-1243 ◽  
Author(s):  
Ricardo Morin ◽  
Jean Beaulieu ◽  
Marie Deslauriers ◽  
Gaëtan Daoust ◽  
Jean Bousquet

Butternut (Juglans cinerea L.) is a minor component of the temperate deciduous forest region of northeastern North America, but it is severely affected by the butternut canker (Sirococcus clavigignenti-juglandacearum Nair, Kostichka, and Kuntz) in the southern part of its natural range. Genetic diversity and population structure in as-yet unaffected or only slightly affected natural populations were evaluated at 12 isozyme loci. The genetic diversity estimates were low with values much below those estimated in other species of the same genus or in boreal tree species, with 25 and 13.9% polymorphic loci at the species and population levels, respectively; 1.3 and 2.3 alleles per locus and per polymorphic locus, respectively, at the species level; and an average observed heterozygosity of 0.028. Population differentiation was low, with the exception of one unique population. The implications for advanced conservation are discussed.Key words: butternut, isozymes, Sirococcus, canker, population structure.

2000 ◽  
Vol 78 (9) ◽  
pp. 1238-1243 ◽  
Author(s):  
Ricardo Morin ◽  
Jean Beaulieu ◽  
Marie Deslauriers ◽  
Gaëtan Daoust ◽  
Jean Bousquet

2000 ◽  
Vol 78 (7) ◽  
pp. 941-956 ◽  
Author(s):  
Om P Rajora ◽  
Alex Mosseler ◽  
John E Major

Red spruce (Picea rubens Sarg.) has become increasingly rare across large portions of its range in eastern North America as a result of a general and widespread decline over the past century. Genetic diversity, population genetic structure, outcrossing rates in the filled seeds, and actual inbreeding levels were characterized in five small, isolated, remnant red spruce populations from the disjunct northwestern limits of its range in Ontario and five populations from the larger, more extensive Maritime populations of Nova Scotia and New Brunswick to determine genetic and reproductive status, to provide some benchmarks for monitoring genetic changes resulting from isolation and restricted population sizes, and to assist the development of restoration and conservation strategies. Thirty-seven allozyme loci coding for 15 enzymes were used for genetic diversity assessments, and six of the most polymorphic loci were used for mating system determination. On average, 29.1% (95% criterion) of the loci were polymorphic, the number of alleles per locus was 1.60, and the observed and expected heterozygosities were 0.097 and 0.100, respectively. The Ontario populations were comparable to or slightly less genetically variable than those from the Maritimes. Only 4.7% of the detected genetic variation was among stands; the remainder was among individuals within stands. The Maritime populations were genetically less differentiated from each other than those in Ontario. With the exception of three Maritime populations clustering tightly in one group, there was no clear separation of Ontario red spruce populations from Maritime red spruce populations based on genetic distance as well as canonical discriminant analyses. The average multilocus (tm) and single-locus (ts) population outcrossing rates were 0.595 and 0.558, respectively, indicating a comparatively high tolerance for inbreeding up to the filled seed stage of development in red spruce. The Ontario populations, on average, showed higher outcrossing rates (tm = 0.654, ts = 0.641) than the Maritime populations (tm = 0.535, ts = 0.475). Individual family outcrossing rates were similar to their respective population outcrossing rates and no significant differences were observed among families within populations for the multilocus estimates. When such high levels of inbreeding in filled seeds were combined with the proportions of empty (post-pollination-aborted) seeds, it appears that actual inbreeding levels may vary from 48 to 86%. The highest inbreeding levels occurred in the smallest, most isolated Ontario populations and in those populations most likely to have been affected by poorer pollination conditions. Allozyme variation indicates that in the short term, extant remnants of Ontario red spruce have maintained their genetic diversity and integrity. For artificial restoration of red spruce in Ontario, local seed sources could be used without undue concern over losses of genetic diversity. However, over the longer term, genetic drift and inbreeding may be expected to result in further losses of genetic diversity and (or) reproductive fitness if population sizes, numbers, and distribution continue to decline.Key words: Picea rubens, allozymes, gene conservation, restoration, genetic diversity, population structure, outcrossing rates, inbreeding.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Sharon Auma Owuor ◽  
Edward George Mamati ◽  
Remmy Wekesa Kasili

To evaluate the origin, genetic diversity, and population structure of domesticated rabbits in Kenya, a 263-base pair region of mtDNA D-loop region of 111 rabbits sampled from Kakamega, Vihiga, and Bungoma counties in the western region, Laikipia and Nyandarua counties in the central region, and Kitui, Machakos, and Makueni in the eastern region of the country were analyzed. The average haplotype (0.40702) and nucleotide (0.01494) diversities observed were low, indicating low genetic diversity of domesticated rabbits in Kenya. This study resolved 5 unique haplotypes in the mtDNA D-loop region. A population genetic structure distinguishing Europe grouping and domesticated rabbits in Kenya was obtained on incorporating 32 known haplotypes. Domesticated rabbits in Kenya clustered together with rabbits from other geographic regions, suggesting common origin. The results suggested that the Kenyan domesticated rabbits may have originated from Europe. Integration of exotic breeds into breeding programmes could have contributed to the low genetic diversity. These results provide useful information for breeding and conservation decisions by the relevant stakeholders in the agriculture industry in Kenya.


Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 653-661 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Arunee Jetsadu ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Peerasak Srinives

The objective of this research was to determine the genetic diversity and population structure of natural populations of two rare wild species of Asian Vigna (Phaseoleae, Fabaceae), Vigna exilis Tateishi & Maxted and Vigna grandiflora (Prain) Tateishi & Maxted, from Thailand. Employing 21 simple sequence repeat markers, 107 and 85 individuals from seven and five natural populations of V. exilis and V. grandiflora, respectively, were analyzed. In total, the markers detected 196 alleles for V. exilis and 219 alleles for V. grandiflora. Vigna exilis populations showed lower average values in number of alleles, allelic richness, observed heterozygosity, gene diversity, and outcrossing rate than V. grandiflora populations, namely 58.00% versus 114.60%, 51.96% versus 74.80%, 0.02% versus 0.18%, 0.40% versus 0.66%, and 3.24% versus 17.41%, respectively. Pairwise FST among populations demonstrated that V. exilis was much more differentiated than V. grandiflora. Analysis of molecular variance revealed that 41.83% and 15.06% of total variation resided among the populations of V. exilis and V. grandiflora, respectively. Seven and two genetic clusters were detected for V. grandiflora and V. exilis by STRUCTURE analysis. Our findings suggest that different strategies are required for in situ conservation of the two species. All V. exilis populations, or as many as possible, should be conserved to protect genetic resources of this species, while a few V. grandiflora populations can capture the majority of its genetic variation.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2020 ◽  
Vol 13 (7) ◽  
pp. 1462-1472
Author(s):  
Haitham Elbir ◽  
Faisal Almathen ◽  
Ayman Elnahas

Background and Aim: Hyalomma dromedarii ticks are vectors of disease agents and hosts of Francisella-like endosymbionts (FLEs). Knowledge about intraspecific genetic variation among H. dromedarii and its Francisella species is limited. The aims of this study were to investigate whether certain H. dromedarii genotypes are specialized in carrying specific Francisella species genotypes and scrutinize the population structure of H. dromedarii ticks in Saudi Arabia. Materials and Methods: We collected 151 H. dromedarii ticks from 33 camels from 13 locations in Saudi Arabia. The second internal transcribed spacer (ITS2), cytochrome c oxidase subunit-1(COI), and 16S rRNA genes were used for single-and multi-locus sequence typing and phylogenetic analyses. H. dromedarii-borne Francisella was screened using the tul4 gene and 16S rRNA Francisella-specific primers followed by amplicon Sanger sequencing. Results: Single-locus typing of ticks using ITS2, 16S rRNA, and COI genes yielded 1, 10, and 31 sequence types (ST), respectively, with pairwise sequence similarity of 100% for ITS2, 99.18-99.86% for COI, and 99.50-99.75% for 16S rRNA. COI sequence analysis indicated a lack of strict geographical structuration, as ST15 was found in both Saudi Arabia and Kenya. In contrast, multilocus sequence typing resolved 148 H. dromedarii ticks into 39 genotypes of ticks and three genotypes of FLEs. The ST2-FLE genotype was carried by the tick genotype ST35, while the ST1-FLE genotype and 41.89% of the ST3-FLE genotype were carried by the tick genotype ST32. Accordingly, there appeared to be no specialization of certain tick genotypes to harbor-specific FLE genotypes. Conclusion: For the 1st time, we have provided an overview of the population structure of H. dromedarii ticks and FLE strains. We found a low level of genetic diversity among FLEs and non-specialized circulation of FLEs among H. dromedarii ticks.


2020 ◽  
Vol 69 (1) ◽  
pp. 86-93
Author(s):  
H. S. Ginwal ◽  
Rajesh Sharma ◽  
Priti Chauhan ◽  
Kirti Chamling Rai ◽  
Santan Barthwal

AbstractHimalayan cedar (Cedrus deodara) is one of the most important temperate timber species of Western Himalayas and is considered to be among the endangered conifer species in the region. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Ten polymorphic chloroplast microsatellites (cpSSR) were used to study genetic diversity and population structure in twenty one natural populations of C. deodara throughout its entire distribution range in Western Himalayas. When alleles at each of the 10 loci were jointly analysed, 254 different haplotypes were identified among 1050 individuals. The cpSSRs indicate that C. deodara forests maintain a moderately high level of genetic diversity (mean h = 0.79 ). AMOVA analysis showed that most of the diversity in C. deodara occurs within populations. Bayesian analysis for population structure (BAPS) revealed spatial structuration of the variation (22 % of the total variation) and substructuring captured nineteen genetic clusters in the entire divisions of the populations. Most of the populations were clustered independently with minor admixtures. The distribution of genetic diversity and sub-structuring of C. deodara may be due to restricted gene flow due to geographic isolation, genetic drift, and natural selection. These findings indicated existence of genetically distinct and different high diversity and low diversity clusters, which are potential groups of populations that require attention for their conservation and management. The results are interpreted in context of future conservation plans for C. deodara.


ZooKeys ◽  
2020 ◽  
Vol 941 ◽  
pp. 49-69
Author(s):  
Diana Ortíz-Gamino ◽  
Josefat Gregorio ◽  
Luis Cunha ◽  
Esperanza Martínez-Romero ◽  
Carlos Fragoso ◽  
...  

Pontoscolex corethrurus (Müller, 1857) is an invasive tropical earthworm, globally distributed. It reproduces through parthenogenesis, which theoretically results in low genetic diversity. The analysis of the population structure of P. corethrurus using molecular markers may significantly contribute to understanding the ecology and reproductive system of this earthworm species. This work assessed the genetic diversity and population structure of P. corethrurus with 34 polymorphic inter simple sequence repeat markers, covering four populations in tropical and temperate pastures from Veracruz State. Nuclear markers distinguished two genetic clusters, probably corresponding to two distinct genetic lineages. The number of clones detected in the AC population was lower than expected for a parthenogenetic species. Also, the apparent lack of differences in population structures related to the geographic region among the populations studied may indicate that human-mediated transference is prevalent in these areas. Still, most individuals apparently belong to lineage A, and only a few individuals seem to belong to the lineage B. Thus, the admixture signatures found among the four populations of P. corethrurus may have facilitated a successful invasion by directly increasing fitness. In summary, addressing the genetic variation of P. corethrurus with ISSR markers was a suitable approach, as it evidenced the genetic diversity and relationships in the populations evaluated.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1365
Author(s):  
Lin Chen ◽  
Tingting Pan ◽  
Huirong Qian ◽  
Min Zhang ◽  
Guodong Yang ◽  
...  

Osmanthus serrulatus Rehder (Oleaceae) is an endemic spring-flowering species in China. It is narrowly distributed in the southwestern Sichuan Basin, and is facing the unprecedented threat of extinction due to problems associated with natural regeneration, habitat fragmentation and persistent and serious human interference. Here, the genetic diversity and population structure of 262 individuals from ten natural populations were analyzed using 18 microsatellites (SSR) markers. In total, 465 alleles were detected across 262 individuals, with a high polymorphic information content (PIC = 0.893). A high level of genetic diversity was inferred from the genetic diversity parameters (He = 0.694, I = 1.492 and PPL = 98.33%). AMOVA showed that a 21.55% genetic variation existed among populations and the mean pairwise Fst (0.215) indicated moderate genetic population differentiation. The ten populations were basically divided into three groups, including two obviously independent groups. Our results indicate that multiple factors were responsible for the complicated genetic relationship and endangered status of O. serrulatus. The concentrated distribution seems to be the key factor causing endangerment, and poor regeneration, human-induced habitat loss and fragmentation seem to be the primary factors in the population decline and further genetic diversity loss. These findings will assist in future conservation management and the scientific breeding of O. serrulatus.


Sign in / Sign up

Export Citation Format

Share Document