Structural characterization of the stigma-style complex of Cynara cardunculus (Asteraceae) and immunolocalization of cardosins A and B during floral development

2006 ◽  
Vol 84 (5) ◽  
pp. 737-749 ◽  
Author(s):  
Patrícia Duarte ◽  
Raquel Figueiredo ◽  
Susana Pereira ◽  
José Pissarra

Studies were carried out on the structure of the stigma and style of Cynara cardunculus L. (cardoon) during flower development. The stigma is of the dry type with a papillate cuticularized epidermis. During development, the unicellular papillae become match-stick shaped, cuticularize, and show an increase in vacuolar volume. In mature papillae, two morphologically different vacuoles were observed, one electron-dense and the other electron-transparent, putatively corresponding to distinct vacuolar populations. These vacuoles label differently for cardosin A, specifically detected in the electron-dense compartments. The style is solid with a cuticularized epidermis and a central core of transmitting tissue (TT) several cell layers thick. The TT cells show abundant rough endoplasmic reticulum and Golgi bodies, associated with active secretion. During maturation, TT cells become increasingly separated by a polysaccharide-rich extracellular matrix. Communication between TT cells is maintained via plasmodesmata in longitudinal walls. Distribution of cardosins A and B in developing C. cardunculus flowers was also characterized. The presence of aspartic proteinases (APs) in flowers is unusual, generally occurring at low levels. Cardosins A and B are always present in cardoon florets and localize at distinct pistil levels: stigma (papillae) and style (TT), respectively. This differential localization suggests distinct biological functions for cardosins, most likely essential for reproduction in this species.

2020 ◽  
Vol 22 (35) ◽  
pp. 19468-19479 ◽  
Author(s):  
Keiichiro Shiraga ◽  
Mako Urabe ◽  
Takeshi Matsui ◽  
Shojiro Kikuchi ◽  
Yuichi Ogawa

The biological functions of proteins depend on harmonization with hydration water surrounding them.


Author(s):  
Juho Lehmusto ◽  
Anton V. Ievlev ◽  
Ercan Cakmak ◽  
James R. Keiser ◽  
Bruce A. Pint

AbstractSeveral modern power production systems utilize supercritical CO2 (sCO2), which can contain O2 and H2O as impurities. These impurities may degrade the compatibility of structural alloys through accelerated oxidation. However, it remains unclear which of these impurities plays a bigger role in high-temperature reactions taking place in sCO2. In this study, various model and commercial Fe‐ and Ni‐based alloys were exposed in 300 bar sCO2 at 750 °C to low levels (50 ppm) of O2 and H2O for 1,000 h. 18O-enriched water was used to enable the identification of the oxygen source in the post-exposure characterization of the samples. However, oxygen from the water did not accumulate in the scale, which consisted of Cr2O3 in the cases where a protective oxide formed. A 2wt.% Ti addition to a Ni-22%Cr model alloy resulted in the formation of thicker oxides in sCO2, while a 1wt.% Al addition reduced the scale thickness. A synergistic effect of both Al and Ti additions resulted in an even thicker oxide than what was formed solely by Ti, similar to observations for Ni-based alloy 282.


1988 ◽  
Vol 15 (2) ◽  
pp. 81-84 ◽  
Author(s):  
E. M. Ahmed ◽  
J. A. Applewhite

Abstract Florunner peanut seeds contained five trypsin isoinhibitors. Amino acid profiles of the trypsin inhibitors fraction showed high levels of aspartic acid, half-cystine and serine and low levels of histidine and tyrosine. The molecular weight of the inhibitor was 8.3 KDa. The presence of multiforms of this inhibitor, its low molecular weight and the high amount of half-cystine indicate that peanut trypsin inhibitor is of the Bowman-Birk type.


Agriculture ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 472-492 ◽  
Author(s):  
Zélia Velez ◽  
Marco Campinho ◽  
Ângela Guerra ◽  
Laura García ◽  
Patricia Ramos ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1267-1276 ◽  
Author(s):  
P.D. Jenik ◽  
V.F. Irish

The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.


Cytotherapy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. e23
Author(s):  
Jehan El-Jawhari ◽  
Georgios Kleftouris ◽  
Yasser El-Sherbiny ◽  
Elena Jones ◽  
Peter Giannoudis

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuan Dai ◽  
Weijia Luo ◽  
Xiaojing Yue ◽  
Wencai Ma ◽  
Jing Wang ◽  
...  

Abstract The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases.


2019 ◽  
Vol 16 (32) ◽  
pp. 279-286
Author(s):  
Marcos Antônio KLUNK ◽  
Zeban SHAH ◽  
Paulo Roberto WANDER

Removal of malachite green dye by adsorption from aqueous solution using montmorillonite clay is reported in this work. A malachite green dye is a cationic widely used in textile industries. Due to its persistence in the aquatic environment, it becomes a problem for aquatic and terrestrial organisms. This dye can be adsorbed through various techniques, but high acquisition and operating costs preclude widespread use. Several adsorbents are available in the market, but the most outstanding are the clays, especially the montmorillonites. These clays are finely divided material ( 0.002 mm), and its adsorption properties are continuously investigated. Types of clays 2:1 (two tetrahedral to one octahedral) are called expandables. The montmorillonite has a potential for dyes removal in wastewater due to the high surface area, porosity with excellent cation exchange capacity conferring its adsorbent property. This work aims to use the montmorillonite as an adsorption system in stages to textile decolorization effluent, composed of malachite green dye, reproduced in the laboratory. The characterization of the clay gives high purity and is used as adsorbent of good quality and efficiency. The retention of dyes in the system composed of montmorillonite arranged in separation stages was efficient. The effect of dye concentration and retention time are the most important parameters used in this study. High concentrations and retention time below 24 hours resulted in low levels of removal (25%). On the other hand, the low level of initial concentration increases removal efficiency (57%). Thus, the results obtained in this work allow concluding that montmorillonite is able to removal malachite green dye.


2006 ◽  
Vol 39 (4-5) ◽  
pp. 273-279 ◽  
Author(s):  
Anna V. Shnyrova ◽  
Claudia S. Oliveira ◽  
Ana C. Sarmento ◽  
Marlene T. Barros ◽  
Galina G. Zhadan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document