Hybridization and the reproductive pathways mediating gene flow between nativeMalus coronariaand domestic apple,M. domestica

Botany ◽  
2009 ◽  
Vol 87 (9) ◽  
pp. 864-874 ◽  
Author(s):  
Paul Kron ◽  
Brian C. Husband

Gene flow from crops to wild populations is of increasing scientific and public interest, but the potential effects are not well understood when taxa differ in ploidy. We examined the potential for hybridization and gene flow between the introduced diploid domestic apple, Malus domestica Borkh., and the tetraploid crabapple, Malus coronaria (L.) Miller. Using ploidy and isozyme markers, we inferred the incidence of hybrids in natural populations (adults and open-pollinated seed) and in controlled crosses. Geographic range and flowering time overlapped sufficiently for cross-pollination between domestic apple and M. coronaria. Heterospecific crosses produced as many fruit and seeds as conspecific pollinations on M. coronaria mothers. Some seeds from heterospecific pollinations were hybrids, while others were apomictic in origin. In a natural population, all adult trees tested were tetraploid, but open-pollinated seeds varied in ploidy: 57% tetraploid (sexual or apomictic); 7.7% diploid (apomictic); 7.4% hexaploid or octaploid (sexual); and 27.5% triploid or pentaploid hybrids. Despite previous reports showing that the native and introduced gene pools remain distinct, the high proportion of hybrid seeds suggests there is significant potential for gene flow from domestic apples into native M. coronaria populations.

1991 ◽  
Vol 48 (5) ◽  
pp. 945-957 ◽  
Author(s):  
Kjetil Hindar ◽  
Nils Ryman ◽  
Fred Utter

This paper addresses the genetic consequences of aquaculture on natural fish populations. The study is motivated by rapidly increasing numbers of intentionally and accidentally released fish and is based on empirical observations reported in the literature. A wide variety of outcomes, ranging from no detectable effect to complete introgression or displacement, has been observed following releases of cultured fish into natural settings. Where genetic effects on performance traits have been documented, they always appear to be negative in comparison with the unaffected native populations. These findings are consistent with theoretical considerations of the implications of elevated levels of gene flow between cultured and locally adapted natural populations; they raise concerns over the genetic future of many natural populations in the light of increasing numbers of released fish. Strategies for the genetic protection of native populations from the effects of aquaculture are outlined including more secure containment, the use of sterilized fish, and modifying the points of rearing and release. We recommend strong restrictions on gene flow from cultured to wild populations and effective monitoring of such gene flow.


2021 ◽  
Author(s):  
Tianzhu Xiong ◽  
Xueyan Li ◽  
Masaya Yago ◽  
James Mallet

Substitution rate defines the fundamental timescale of molecular evolution which often varies in a species-specific manner. However, it is unknown under what conditions lineage-specific rates can be preserved between natural populations with frequent hybridization. Here, we show in a hybrid zone between two butterflies, Papilio syfanius and Papilio maackii, that genome-wide barriers to gene flow can effectively separate different rates of molecular evolution in linked regions. The increased substitution rate in the lowland lineage can be largely explained by temperature-induced changes to the spontaneous mutation rate. A novel method based on entropy is developed to test for the existence of barrier loci using a minimal number of samples from the hybrid zone, a robust framework when system complexity far exceeds sample information. Overall, our results suggest that during the process of speciation, the separation of substitution rates can occur locally in the genome in parallel to the separation of gene pools.


Author(s):  
Rubén Sancho ◽  
Ana Guillem-Amat ◽  
Elena López-Errasquín ◽  
Lucas Sánchez ◽  
Félix Ortego ◽  
...  

AbstractThe sterile insect technique (SIT) is widely used in integrated pest management programs for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata. The genetic interactions between the released individuals from the genetic sexing strains (GSS), used for SIT applications worldwide, and wild individuals have not been studied. Under the hypothesis that a number of Vienna GSS individuals released to the field might not be completely sterile and may produce viable offspring, we have analyzed medfly Spanish field populations to evaluate the presence of Vienna strain genetic markers. To this goal, we have used contrasted nuclear and mitochondrial genetic markers, and two novel sets of nuclear polymorphisms with the potential to be markers to discriminate between Vienna and wild individuals. Nuclear Vienna markers located on the 5th chromosome of Vienna males have been found in 2.2% (19 from 875) of the Spanish wild medfly females captured at the area where SIT is applied. In addition, a female-inherited mitochondrial Vienna marker has been found in two from the 19 females showing nuclear Vienna markers. The detection of several of these markers in single individuals represents evidence of the introgression of Vienna strain into natural populations. However, alternative explanations as their presence at low frequency in wild populations in the studied areas cannot be fully discarded. The undesired release of non-fully sterile irradiated GSS individuals into the field and their interactions with wild flies, and the potential environmental implications should be taken into account in the application of the SIT.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 367
Author(s):  
Mateja Kišek ◽  
Kristjan Jarni ◽  
Robert Brus

This study focuses on the morphological and genetic characteristics of European crab apple (Malus sylvestris (L.) Mill.) and the occurrence of hybrids in its populations. We analyzed a total of 107 putative European crab apple trees in Slovenia: 92 from nine natural populations, five from a seed stand and 10 from a stand of unnatural origin. We also included 18 domesticated apple trees (Malus × domestica Borkh.) and two Japanese flowering crab apple trees (Malusfloribunda van Houtte) as outliers. The trees were classified into groups of European crab apples, hybrids and domesticated apples according to their morphological and genetic characteristics. Classification based on morphological traits produced different results (58.75% European crab apple, 37.11% hybrids and 4.14% domesticated apple) compared to those based on genetic analysis (70.10% European crab apple, 21.64% hybrids and 8.26% domesticated apple). When genetic and morphological characteristics were combined, only 40.20% of the trees were classified as European crab apple, and an additional group of feral cultivars of domesticated apples (6.18%) was identified. The analysis revealed that hybridization with domesticated apple is taking place in all studied natural European crab apple populations; however, hybrids and feral cultivars only occur to a limited extent. When introducing European crab apple into forests in the future, only genetically verified forest reproductive material obtained exclusively from suitable seed stands should be used.


2021 ◽  
Author(s):  
Tomos Potter ◽  
Anja Felmy

AbstractIn wild populations, large individuals have disproportionately higher reproductive output than smaller individuals. We suggest an ecological explanation for this observation: asymmetry within populations in rates of resource assimilation, where greater assimilation causes both increased reproduction and body size. We assessed how the relationship between size and reproduction differs between wild and lab-reared Trinidadian guppies. We show that (i) reproduction increased disproportionately with body size in the wild but not in the lab, where effects of resource competition were eliminated; (ii) in the wild, the scaling exponent was greatest during the wet season, when resource competition is strongest; and (iii) detection of hyperallometric scaling of reproduction is inevitable if individual differences in assimilation are ignored. We propose that variation among individuals in assimilation – caused by size-dependent resource competition, niche expansion, and chance – can explain patterns of hyperallometric scaling of reproduction in natural populations.


2005 ◽  
Vol 40 (10) ◽  
pp. 975-980 ◽  
Author(s):  
Maria Imaculada Zucchi ◽  
José Baldin Pinheiro ◽  
Lázaro José Chaves ◽  
Alexandre Siqueira Guedes Coelho ◽  
Mansuêmia Alves Couto ◽  
...  

This study was carried out to assess the genetic variability of ten "cagaita" tree (Eugenia dysenterica) populations in Southeastern Goiás. Fifty-four randomly amplified polymorphic DNA (RAPD) loci were used to characterize the population genetic variability, using the analysis of molecular variance (AMOVA). A phiST value of 0.2703 was obtained, showing that 27.03% and 72.97% of the genetic variability is present among and within populations, respectively. The Pearson correlation coefficient (r) among the genetic distances matrix (1 - Jaccard similarity index) and the geographic distances were estimated, and a strong positive correlation was detected. Results suggest that these populations are differentiating through a stochastic process, with restricted and geographic distribution dependent gene flow.


2019 ◽  
Author(s):  
Syuan-Jyun Sun ◽  
Andrew M. Catherall ◽  
Sonia Pascoal ◽  
Benjamin J. M. Jarrett ◽  
Sara E. Miller ◽  
...  

AbstractModels of ‘plasticity-first’ evolution are attractive because they explain the rapid evolution of new complex adaptations. Nevertheless, it is unclear whether plasticity can still facilitate rapid evolution when diverging populations are connected by gene flow. Here we show how plasticity has generated adaptive divergence in fecundity in wild populations of burying beetlesNicrophorus vespilloides, which are still connected by gene flow, which occupy distinct Cambridgeshire woodlands that are just 2.5km apart and which diverged from a common ancestral population c. 1000-4000 years ago. We show that adaptive divergence is duetothe coupling of an evolved increase in the elevation of the reaction norm linking clutch size to carrion size (i.e. genetic accommodation) with plastic secondary elimination of surplus offspring. Working in combination, these two processes have facilitated rapid adaptation to fine-scale environmental differences, despite ongoing gene flow.


2019 ◽  
Author(s):  
Maja Boczkowska ◽  
Katarzyna Bączek ◽  
Olga Kosakowska ◽  
Anna Rucińska ◽  
Wiesław Podyma ◽  
...  

Abstract Background: Valeriana officinalis L. is one of the most important medicinal plant with a mild sedative, nervine, antispasmodic and relaxant effect. Despite a substantial number of studies on this species, population genomics has not yet been analyzed. The main aim of this study was: characterization of genetic variation of natural populations of V. officinalis in Poland and comparison of variation of wild populations and the cultivated form using Next Generation Sequencing based DArTseq technique. We also would like to establish foundations for genetic monitoring of the species in the future and to develop genetic fingerprint profile for samples deposited in gene bank and in natural sites in order to assess the degree of their genetic integrity and population structure preservation in the future.Results: The major and also the most astounding result of our work is the low level of observed heterozygosity of individual plants from natural populations despite the fact that the species is widespread in the studied area. Inbreeding, in naturally outcrossing species such as valerian, decreases the reproductive success. The analysis of the population structure indicated the potential presence of metapopulation in a broad area of Poland and the formation of a distinct gene pool in Bieszczady Mountains. The results also indicate the presence of individuals of the cultivated form in natural populations in the region where the species is cultivated for the needs of the pharmaceutical industry and this could lead to structural and genetic imbalance in wild populations.Conclusions: The DArTseq technology can be applied effectively in genetic studies of V. officinalis. The genetic variability of wild populations is in fact significantly lower than assumed. Individuals from the cultivated population are found in the natural environment and their impact on wild populations should be monitored.


2019 ◽  
Author(s):  
Melanie J. Heckwolf ◽  
Britta S. Meyer ◽  
Robert Häsler ◽  
Marc P. Höppner ◽  
Christophe Eizaguirre ◽  
...  

AbstractWhile environmentally inducible epigenetic marks are discussed as one mechanism of transgenerational plasticity, environmentally stable epigenetic marks emerge randomly. When resulting in variable phenotypes, stable marks can be targets of natural selection analogous to DNA sequence-based adaptation processes. We studied both postulated pathways in natural populations of three-spined sticklebacks (Gasterosteus aculeatus) and sequenced their methylomes and genomes across a salinity cline. Consistent with local adaptation, populations showed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. In a two-generation experiment, 62% of these pop-DMS were insensitive to salinity manipulation, suggesting that they could be stable targets for natural selection. Two-thirds of the remaining inducible pop-DMS became more similar to patterns detected in wild populations from the corresponding salinity, and this pattern accentuated over consecutive generations, indicating a mechanism of adaptive transgenerational plasticity. Natural DNA methylation patterns can thus be attributed to two epigenetic pathways underlying the rapid emergence of adaptive phenotypes in the face of environmental change.


Sign in / Sign up

Export Citation Format

Share Document