ULTRASTRUCTURE OF THE HYPHAE AND HAUSTORIA OF PHYTOPHTHORA INFESTANS AND HYPHAE OF P. PARASITICA

1966 ◽  
Vol 44 (11) ◽  
pp. 1495-1503 ◽  
Author(s):  
Mary A. Ehrlich ◽  
Howard G. Ehrlich

The ultrastructure of the mycelium of both Phytophthora infestans and P. parasitica is consistent with that reported for other Oomycetes. A distinct plasmalemma, porate nuclei, tubular endoplasmic reticulum, mitochondria with tubular cristae, Golgi dictyosomes, and lipid bodies are present within the protoplast. The haustoria produced by P. infestans in the leaves of susceptible potato varieties consist of an expanded haustorial head surrounded by a fungus wall which is continuous with the wall of the intercellular mycelium. The haustorium lacks the long narrow stalk or neck often associated with this organ, and there is considerable cytoplasmic continuity between the haustorium and the intercellular mycelium. All P. infestans haustoria observed were anucleate and generally contained only a few mitochondria and sparse endoplasmic reticulum. The haustorium is enclosed in an encapsulation surrounded by a membrane which is continuous with the host plasmalemma. There is no evidence, around any portion of the haustorium, of a sheath originating from the cell wall of the host. A survey of the current literature on the ultrastructure of the Eumycotinia shows that the parasitic fungi exhibit no unique cytoplasmic features when compared with non-parasitic fungi, and the ultrastructure of the haustoria-producing facultative saprophyte is similar to that of the obligate parasites.

1978 ◽  
Vol 56 (22) ◽  
pp. 2865-2872 ◽  
Author(s):  
Ichiko Tsuneda ◽  
Lorene L. Kennedy

Germination of basidiospores in Fomes fomentarius (Fries) Kickx is bipolar with germ tubes emerging at both ends. Ungerminated spores are smooth with a thick cell wall consisting of two layers: an outer thin, electron-dense layer and an inner thick, electron-light layer. During the early stage of germination, two additional cell wall layers are formed: a very thin, electron-dense layer and a relatively thick, electron-light layer. Germ tube walls originate from these newly formed, inner layers. Ungerminated spores are uninucleate and contain numerous lipid bodies, ribosomes, and cisternae of endoplasmic reticulum. Germinated spores have distinct mitochondria and an invaginated plasma membrane and are usually devoid of endoplasmic reticulum.


2014 ◽  
Vol 50 (1-2) ◽  
pp. 165-168 ◽  
Author(s):  
H. J. Wilms

The egg apparatus of <em>Spinacia</em> was studied from the time the embryo sac reaches its maximal size to just before fertilization, i.e., until about 8-9 hours after pollination. At maturity each synergid has a large elongated nucleus and prominent chalazal vacuoles, Numerous mitochondria, plastids, dictyosomes, free ribosomes, rough endoplasmic reticulum (RER), and lipid bodies are present. The cell wall exists only around the micropylar half of the synergids and each cell has a distinct, striated filiform apparatus. In general, degeneration of one synergid starts after pollination. The egg cell has a spherical nucleus and nucleolus and a large micropylar vacuole. Numerous mitochondria, some plastids with starch grains, dictyosomes, free ribosomes, and HER are present. A continuous cell wall is absent around the chalazal end of the egg cell.


2021 ◽  
Vol 155 ◽  
pp. 105361
Author(s):  
Martina Damenti ◽  
Giovanna Coceano ◽  
Francesca Pennacchietti ◽  
Andreas Bodén ◽  
Ilaria Testa

1974 ◽  
Vol 140 (1) ◽  
pp. 47-55 ◽  
Author(s):  
David Jones ◽  
Alex. H. Gordon ◽  
John S. D. Bacon

1. Two fungi, Coniothyrium minitans Campbell and Trichoderma viride Pers. ex Fr., were grown on autoclaved crushed sclerotia of the species Sclerotinia sclerotiorum, which they parasitize. 2. in vitro the crude culture filtrates would lyse walls isolated from hyphal cells or the inner pseudoparenchymatous cells of the sclerotia, in which a branched β-(1→3)-β-(1→6)-glucan, sclerotan, is a major constituent. 3. Chromatographic fractionation of the enzymes in each culture filtrate revealed the presence of several laminarinases, the most active being an exo-β-(1→3)-glucanase, known from previous studies to attack sclerotan. Acting alone this brought about a limited degradation of the glucan, but the addition of fractions containing an endo-β-(1→3)-glucanase led to almost complete breakdown. A similar synergism between the two enzymes was found in their lytic action on cell walls. 4. When acting alone the endo-β-(1→3)-glucanase had a restricted action, the products including a trisaccharide, tentatively identified as 62-β-glucosyl-laminaribiose. 5. These results are discussed in relation to the structure of the cell walls and of their glucan constituents.


1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


2013 ◽  
Vol 288 (45) ◽  
pp. 32384-32393 ◽  
Author(s):  
Christian Genz ◽  
Julia Fundakowski ◽  
Orit Hermesh ◽  
Maria Schmid ◽  
Ralf-Peter Jansen

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Belgin Yalçın ◽  
Lu Zhao ◽  
Martin Stofanko ◽  
Niamh C O'Sullivan ◽  
Zi Han Kang ◽  
...  

Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.


2021 ◽  
Author(s):  
Maja Brus-Szkalej ◽  
Christian B. Andersen ◽  
Ramesh R. Vetukuri ◽  
Laura J. Grenville-Briggs Didymus

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyse protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localised to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. All of the seven proteins are predicted to contain transmembrane helices and both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of transglutaminase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases.


1990 ◽  
Vol 10 (6) ◽  
pp. 3013-3019
Author(s):  
P Meaden ◽  
K Hill ◽  
J Wagner ◽  
D Slipetz ◽  
S S Sommer ◽  
...  

Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.


1974 ◽  
Vol 14 (2) ◽  
pp. 439-449
Author(s):  
J. BURGESS ◽  
E. N. FLEMING

The process of cell wall regeneration around cultured protoplasts isolated from tobacco mesophyll has been examined by electron microscopy. The initially formed wall contains 2 components which stain with conventional heavy metal stains. The first consists of un-branched fibres, at first oriented at right angles to the plasmalemma surface. As wall growth proceeds the fibres lengthen and assume an orientation parallel to the plasmalemma. It seems probable that this component is cellulose. The second component of the wall is more amorphous and more densely stained. It is most frequently seen in situations where leaching of materials into the medium would be expected to be minimal. The endoplasmic reticulum and the plasmalemma are the only membrane systems which appear to contribute towards wall formation. No pattern of structure has been detected to explain the orientation or method of synthesis of the microfibrillar part of the wall.


Sign in / Sign up

Export Citation Format

Share Document