Study of callus growth and organ formation in wheat (Triticum aestivum) tissue cultures

1975 ◽  
Vol 53 (10) ◽  
pp. 957-963 ◽  
Author(s):  
D. Dudits ◽  
G. Nemet ◽  
Z. Haydu

Callus cultures of wheat (Triticum aestivum L.) were established by incubation of segments from root tips, shoots of seedlings, and from rachis with B5 and T media. 2,4,5-Tri-chlorophenoxyacetic acid, Benazolin, and Banvel D (Dicamba) were found to be appropriate growth regulators for initiation and maintenance of wheat callus cultures. Cytokinins inhibited callus growth. This effect was less pronounced with zeatin than with kinetin and benzyladenine. Supplementation of media with cytokinins, however, increased the number of roots formed in the callus. Shoots and complete plants were regenerated from rachis and shoot callus.

1992 ◽  
Vol 40 (6) ◽  
pp. 737 ◽  
Author(s):  
SW Adkins

The protective conditions under which callus cultures are grown to prevent microbial contamination and to reduce tissue desiccation cause the accumulation of volatiles in the vessel headspace and reduce the availability of oxygen for respiration. To demonstrate the importance of the gaseous atmosphere to culture growth a study was undertaken on non-morphogenic rice and wheat callus incubated under a number of environmental conditions. Changes in the gaseous atmosphere above rice (Oryza sativa L.) callus during routine culture in a petri dish suppressed growth and promoted necrosis. Incubating callus under a continuous flow of gas mixtures of known composition suggested that the inhibition of growth was caused by the accumulation of high levels of ethylene and to the rapid depletion of oxygen. In order to evaluate the importance of ethylene accumulation aminoethoxyvinyl glycine (AVG), I-aminocyclopropane-I-carboxylic acid (ACC) and silver nitrate (AgNO3) were added to the nutrient medium and ethylene was measured during callus culture. Ethylene restricted callus growth particularly under high (35°C) compared with moderate (25°C) incubation temperatures and under illuminated compared with dark incubation. Under illuminated incubation at 25°C, AVG ( 5 μM ) and AgNO3 (50 μM) improved rice callus growth by 69 and 54% respectively while ACC (100 μM) decreased growth by 15%. Furthermore, rice callus growth was better in large compared with small culture vessels since ethylene accumulation was reduced. In contrast, wheat (Triticum aestivum L.) callus grew well in the petri dish system and released very little ethylene into the culture vessel headspace. Growth was better under illuminated than darkened conditions and under moderate (25°C) compared with high (35°C) incubation temperatures. Furthermore, wheat callus growth was only marginally better in large compared with small culture vessels. Ethylene was not a restrictive factor of wheat callus growth since only low levels were detected in all conditions of incubation. Better control of ethylene and increased oxygen availability could be a way of increasing cell and tissue production for genetic engineering studies of otherwise recalcitrant species such as rice, and may be a way of improving manipulation of wheat.


2021 ◽  
Vol 50 (4) ◽  
pp. 889-896
Author(s):  
Samih M. Tamimi ◽  
Halima Othman

A high-performance protocol for callus induction was devised using germinating mature embryos of two local wheat (Triticum aestivum L.) landraces as explant. The results showed that callus development from germinating embryos was rapid starting one day after culture with an induction rate 20 to 25% higher than those of soaked embryos. In addition, the mean rate of growth of callus developed from germinating embryos was 60 to 70% higher than those cultured from soaked embryos. This study also demonstrated a higher frequency of green spots formation(48 to 56%)on callus derived from germinating embryos compared to their soaked counterpart (24 to 28%), suggesting a better differentiation potential of callus cultures derived from germinating embryo. These findings indicate that germinating mature embryo is more suitable explant for wheat callus induction and regeneration than the soaked mature embryo commonly employed for wheat callus culture.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 1069-1085 ◽  
Author(s):  
A J Lukaszewski

Abstract During the development of disomic additions of rye (Secale cereale L.) chromosomes to wheat (Triticum aestivum L.), two reverse tandem duplications on wheat chromosomes 3D and 4A were isolated. By virtue of their meiotic pairing, the reverse tandem duplications initiated the chromatid type of the breakage-fusion-bridge (BFB) cycle. This BFB cycle continued through pollen mitoses and in the early endosperm divisions, but no clear evidence of its presence in embryo mitoses was found. The chromosome type of BFB cycle was initiated by fusion of two broken chromosome ends resulting in a dicentric or a ring chromosome. Chromosome type BFB cycles were detected in embryo mitoses and in root tips, but they did not persist until the next meiosis and were not transmitted to the progeny. Active BFB cycles induced breakage of other wheat chromosomes that resulted in additional reverse tandem duplications and dicentric and ring chromosomes. Four loci, on chromosome arms 2BS, 3DS, 4AL, and most likely on 7DL, were particularly susceptible to breakage. The BFB cycles produced high frequency of variegation for pigmentation of the aleurone layer of kernels and somatic chimeras for a morphological marker. With the exception of low mutation rate, the observed phenomena are consistent with the activity of a Ds-like element. However, it is not clear whether such an element, if indeed present, was of wheat or rye origin.


2018 ◽  
Vol 22 ◽  
pp. 222-227
Author(s):  
O. M. Honcharuk ◽  
O. V. Dubrovna

Aim. Receiving of genetically modified plants of bread wheat with heterologous ornithine‑δ‑aminotransferase gene. Methods. Agrobacterium-mediated transformation of callus cultures in vitro, PCR-analysis. Results. By Agrobacterium-mediated transformation of the morphogenic calluses of bread wheat (Triticum aestivum L.) using the AGLO strain containing the binary vector pBi-OAT with the target ornithine-δ-aminotransferase (oat) and selective neomycinphosphotransferase II (nptII), transgenic plants-regenerators have been obtained. Conclusions. As a result of the genetic transformation of Zimoyarka variety, 12 wheat regenerants were obtained in the genome which revealed a complete integration of the genetic construct containing the oat and nptII transgenes. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, ornithine‑δ‑aminotransferase gene, PCR-analysis.


2007 ◽  
Vol 62 (1-2) ◽  
pp. 50-54 ◽  
Author(s):  
Atiat M. A. Hassan

The tissue cultures of wheat (Triticum aestivum L.) were induced from the mature embryos (explants) of the dry grains and grown on MS medium containing kinetin (0.1 mg/l) and 2,4 D (1.0 mg/l). The cultures were incubated for two weeks at (25 ± 2) °C under a light/dark regime (16 h light daily). The formed calli were subcultured at the beginning of the stationary growth phase (15 days) with fresh MS medium containing 0, 5, 10, 25, 50, 100, 150 mg/l streptomycin elicitor and maintained for two weeks for three subcultures. A significant increase in phenylalanine ammonia lyase (PAL) activity coincided with the increase of the total phenolic compounds after elicitation with streptomycin. Maximum induction was recorded during the first two weeks, then gradually declined during the rest of the experimental period, but the values attained were still markedly higher than that of the control. The endogenous cinnamic acid content was also increased significantly with the increase in PAL activity making about 2-18% of the total phenolic acids. The growth and accumulation of phenolic compounds were inversely related. However, accumulation of phenolic compounds became limited for growth of wheat tissue culture especially during the long term cultivation.


Genome ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Sawsan S. Youssef ◽  
R. Morris ◽  
P. S. Baenziger ◽  
C. M. Papa

Karyotype stability, which is essential when using wheat (Triticum aestivum L.) doubled haploids in a breeding program, was evaluated in 14 anther-derived doubled-haploid lines after at least three generations of selfing, by crossing them as females with the parent cultivar 'Centurk' and doing cytological studies on the progenies. There were no deviations from the hexaploid chromosome number (2n = 42) in root tips. Meiotic chromosome pairing was as stable as that in the control ('Centurk' × 'Centurk') in most progenies. Chromosomal structural changes and (or) behavioral deviations were detected at the metaphase I, anaphase I, telophase I, and quartet stages of meiosis in a minor proportion of the cells. The frequencies of multivalents, lagging bivalents and univalents, bridges, and micronuclei were higher in some progenies than in the control. Chromosomal fragments were infrequent. The ranges in percentages of normal cells were 72.4–90.0 at anaphase I, 76.4–92.6 at telophase I, and 82.6–93.2 at quartet stages in the doubled-haploid progenies, compared with 95–100, 92–100, and 94–96, respectively, in the control. On the basis of these results, the doubled-haploid lines should produce enough normal gametes to provide adequate seed supplies when they are used as parents in wheat cultivar and population improvement.Key words: Triticum aestivum, chromosome pairing, chromosome aberrations, gametoclonal variation.


2016 ◽  
Vol 3 (2) ◽  
pp. 48
Author(s):  
Laela Sari ◽  
Agus Purwito ◽  
Didy Soepandi ◽  
Ragapadmi Purnamaningsih ◽  
Enny Sudarmonowati

INDUCTION MUTATION AND SELECTION OF IN VITRO PLANT OF WHEAT (Triticum aestivum L.)The goal of this research was to produce wheat crop which is tolerant to lowland condition.Six varieties were used, Dewata, Selayar, Alibey, Oasis, Rabe and HP1744. This research consisted of 4 stages: production of the best callus on MS medium containing 3 g/L 2.4-D, induced mutation of embryogenic callus using EMS, in vitro selection of callus at temperature of 27–35°C, and callus regeneration. The best result for callus production was 76% for Dewata and 70% for Selayar varieties. Higher concentration of EMS and longer soaking time decreased the percentage of callus growth. LC50 for Dewata was 0.3% EMS at 30 minutes and that for Selayar was 0.1% EMS at 60 minutes. The higher the temperature was, the lower was the adaptation tolerant of the plants, and callus growth was inhibited. At the highest temperature (35°C) the callus did not grow at all.Keywords: Induced mutation, Triticum aestivum, EMS, in vitro selection, callusABSTRAKTujuan penelitian ini adalah untuk merakit tanaman gandum yang toleran pada dataran rendah. Varietas yang digunakan ada 6 yaitu Dewata, Selayar, Alibey, Oasis, Rabe dan HP-1744. Penelitian terdiri atas empat tahap yaitu induksi pembentukan kalus terbaik menggunakan media MS + 3 g/L 2,4-D (dipilih dua varietas yang terbaik), induksi mutasi kalus embriogenik menggunakan EMS, seleksi kalus in vitro pada suhu 27–35°C, dan regenerasi. Hasil induksi kalus terbaik terdapat pada varietas Dewata sebesar 76% dan Selayar sebesar 70%. Semakin tinggi konsentrasi EMS dan semakin lama waktu perendaman yang digunakan maka semakin menurun persentase pertumbuhan kalus. LC50 varietas Dewata adalah EMS 0,3% waktu 30 menit sedangkan LC50 varietas Selayar adalah EMS 0,1% waktu 60 menit.Semakin tinggi suhunya maka semakin berkurang toleran adaptasi tanaman tersebut, dan pertumbuhan kalus semakin sedikit. Bahkan pada suhu tertinggi yaitu suhu 35°C tidak ada pertumbuhan kalus sama sekali.Kata Kunci: Induksi mutasi, Triticum aestivum, EMS, seleksi in vitro, kalus


1979 ◽  
Vol 57 (14) ◽  
pp. 1479-1483 ◽  
Author(s):  
Estela Sánchez de Jiménez ◽  
Ezequiel Murillo

Wheat and rye calli were induced on Murashige–Skoog medium by the addition of 2, 4-D[(2,4-dichlorophenoxy)acetic acid]. The effect of Mecoprop [2(4-chloro-2-methyl)phenoxy propionic acid], an analogue of this auxin, was also tested and the rates of callus growth were compared with the ones obtained with 2, 4-D. On Murashige–Skoog medium, Mecoprop induced and supported callus growth of the various cereals tested more efficiently than did 2, 4-D. This effect was more pronounced on wheat callus. When both auxins were present in the culture medium, the enhancing effect of Mecoprop was slightly higher. The specific affinity of both auxins for wheat chromatin was measured. The results indicated that both substances, 2, 4-D and Mecoprop, selectively dissolve wheat chromatin. However, lower concentrations of Mecoprop than of 2, 4-D are required to dissolve the same amount of chromatin. It is concluded that in cereal cell cultures, Mecoprop is a more efficient growth factor than 2, 4-D.


Sign in / Sign up

Export Citation Format

Share Document