Ontogenèse des nodules caulinaires du Sesbania rostrata (légumineuses)

1984 ◽  
Vol 62 (5) ◽  
pp. 982-994 ◽  
Author(s):  
E. Duhoux

Stem nodules of the legume Sesbania rostrata are ovoids, contain chlorophyll and have determinate growth. They possess a large central mass of infected cells. Stem mamillae are regularly arranged in vertical files along the stem and develop into nodules when they are infected by a specific Rhizobium. Each nodule arises from the development of an infected region of the incipient root cortex. The infection in S. rostrata has been shown to proceed in four sequential stages. Some of them have never been shown to occur in other legumes: (i) bacterial penetration takes place in degenerated (dead) cortical cells; (ii) proliferation of the bacteria occurs in the intercellular cavities and initiates a meristematic nodule; (iii) protusion of infection threads at first occurs intercellularly and then intracellularly from the cavities; (iv) finally there is an intracellular release of Rhizobia by an endocytotic process.

2011 ◽  
Vol 24 (11) ◽  
pp. 1359-1371 ◽  
Author(s):  
Katia Bonaldi ◽  
Daniel Gargani ◽  
Yves Prin ◽  
Joel Fardoux ◽  
Djamel Gully ◽  
...  

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein–labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


2001 ◽  
Vol 21 (1) ◽  
pp. 354-366 ◽  
Author(s):  
Carolina Sousa ◽  
Christina Johansson ◽  
Celine Charon ◽  
Hamid Manyani ◽  
Christof Sautter ◽  
...  

ABSTRACT A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin geneenod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5′ and 3′ regions ofenod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.


1980 ◽  
Vol 58 (23) ◽  
pp. 2421-2433 ◽  
Author(s):  
T. A. Peterson ◽  
W. C. Mueller ◽  
L. Englander

Light and electron microscopic investigations of the roots of Rhododendron and other ericaceous plants growing in the vicinity of Clavaria fruiting structures showed a fungal infection consistently associated with the epidermal and cortical cells of the "hair roots." Uninfected hair roots consisted of an epidermis and a one cell thick cortical layer surrounding the stele. Secondary growth in the stele and formation of a cork layer by division of the pericycle caused the cortex and epidermis to slough as the root matured. The structure of the infected hair roots was similar except for the presence of fungus in epidermal and cortical cells. As judged by the appearance of septa, at least two fungi were involved, one with dolipore septa that formed hyphal coils in the infected cells, and one with septa associated with Woronin bodies that occurred as single hyphal strands. Hyphae were found penetrating the cells from the exterior of the root and also passing from cell to cell. No correlation between fungal infection and the phenolic content of the cells could be made. Dissolution of both the fungal and host cytoplasm appeared to occur as the cells were sloughed. It appears that the fungus–root relationship is complex and is limited in duration to a short period of time during the development of the hair roots.


1990 ◽  
Vol 68 (8) ◽  
pp. 1728-1737 ◽  
Author(s):  
E. A. Allen ◽  
P. V. Blenis ◽  
Y. Hiratsuka

Resistance to the western gall rust fungus, Endocronartium harknessii, was observed in 3-, 10-, 20-, and 33-month-old greenhouse-grown seedlings of lodgepole pine (Pinus contorta var. latifolia). Three sites of resistance were identified: epidermal, cortical, and cambial. In cases of epidermal resistance, penetration of the epidermis occurred, but infection was prevented by an apparent hypersensitive response. Cortical resistance occurred where infected cells in the cortex were successfully isolated by necrophylactic periderm and the infected tissue was exfoliated with the rhytidome. In cambial resistance, infections progressed to the vascular cambium where infected cells and cambial initials were inactivated. This resulted in abnormal secondary xylem development, characterized by a zone of pathological tissue extending from the pith to the epidermis. In a number of infected seedlings, cambial function was restored and infected lesions were overgrown. Live mycelium was often maintained in cortical lesions and in some cases reinvaded healthy cortical cells. These latent-type infections resulted in the initiation of gall formation up to 1 year after initial resistance to infection occurred. Key words: tree improvement, western gall rust, pine stem rust.


2007 ◽  
Vol 34 (12) ◽  
pp. 1130 ◽  
Author(s):  
Jasna Savic ◽  
Miroslav Nikolic ◽  
Slaven Prodanovic ◽  
Volker Römheld

The objective of this research was to test the hypothesis of the existence of an active boron (B) uptake into the cortical cells induced by low B supply. The uptake of B was characterised in two tomato (Lycopersicon esculentum Mill.) genotypes: B-efficient FER and B-inefficient mutant T3238. In addition, pea (Pisum sativum L.) was used as an anatomically appropriate model for obtaining intact root cortex. Time course uptake studies in tomato indicate that the B-inefficient mutant was defective by the absence of an active low-B-induced uptake system in the cortex. Pea roots showed up to 10-fold higher accumulation of B into the cortex symplast at low (0.5 µm) external B supply in comparison to adequate B (10 µm) supply. Also, low-B-induced uptake of B was strongly inhibited by 2,4-dinitrophenol, indicating a metabolic energy-derived active component of B uptake at low external supply. Uptake of B by the cortical cells of tomato and pea plants appears to be a combination of both passive and active components, with a passive component prevailing at higher external B. An active component of B uptake suppressed by either adequate or high B supply might indicate a downregulation of plasma membrane-associated B transporter(s) in root cortical cells.


1989 ◽  
Vol 67 (8) ◽  
pp. 2435-2443 ◽  
Author(s):  
M. F. Le Gal ◽  
S. L. A. Hobbs

Pisum sativum L., cv. Afghanistan, does not form nodules with 128C52, a North American strain of Rhizobium leguminosarum. Timing of the abortion of the nodulation process was determined by microscopy in both 'Afghanistan' and nonnodulating 'Trapper,' produced by backcrossing the nonnodulating genes of 'Afghanistan' into 'Trapper,' a North American variety. Three to 5 days after inoculation, we observed deformed roots and localized swellings as well as loosely curled root hairs in these nonnodulating combinations. Rhizobia entered root hairs and epidermal cells, but no infection threads were seen. Cortical cells divided and a nodule meristem was initiated. Some meristematic cells showed abnormal features such as a high concentration of free ribosomes, dilated endoplasmic reticulum often connected to a dilated nuclear envelope, and disrupted mitochondria. Cortical cells around the nodule meristem were devoid of starch grains. Such phenotypes are known to be associated with rhizobial mutants, but in this case a plant effect is responsible.


1965 ◽  
Vol 11 (4) ◽  
pp. 721-725 ◽  
Author(s):  
D. C. Jordan ◽  
I. Grinyer

No intracellular infection threads were observed in ultrathin sections of young root nodules of lupine, although nodule bacteria could be found in the intercellular spaces between the root cortical cells. Evidence suggests that in certain instances the plant cell walls can be disrupted locally, allowing the bacteria to pass into cytoplasm of the host cell. The spread of infection may be initiated in this manner and extended by division of infected cells. No plant-produced enclosing membranes were present around bacteria in the intercellular spaces but such structures developed after the bacteria had entered the plant cell. Although the origin of these membranes is debatable, in the present work it appeared that they were formed de novo, perhaps in a manner akin to the development of the cell plate during cell division. Most of the bacterial cells possessed a wide subwall space lying between the bacterial cell wall and plasma membrane. Discontinuities present in the latter membrane may account for the ribosome-like material found in the subwall space.


1991 ◽  
Vol 69 (7) ◽  
pp. 1520-1532 ◽  
Author(s):  
Michael J. Trinick ◽  
Celia Miller ◽  
Paul A. Hadobas

Fifteen strains of Rhizobium leguminosarum biovar trifolii formed ineffective nodules and (or) nodule-like structures (rhizobia were re-isolated from both structures) on Macroptilium atropurpureum grown in enclosed glass tubes. Bacteria were observed among the parenchyma cells surrounding the nodule-like structures. One variant of R. leguminosarum biovar trifolii (NGR66/ST) isolated from M. atropurpureum formed nodules on this host that exhibited abnormal intercellular and intracellular infection. The bacteria (NGR66/ST) were contained within threadlike structures, surrounded by matrix material. The identities of the Rhizobium strains were confirmed serologically after reisolation and in sections of nodule tissue using immunogold labelling. Rhizobium leguminosarum biovar phaseoli strain NGR76 isolated from Phaseolus vulgaris formed nodules on M. atropurpureum resembling those formed by effective Bradyrhizobium strains. The association was partially effective in nitrogen fixation, and this was reflected in the nodule structure. The percentage of cells infected was lower than that in fully effective nodules. There was a high frequency of infected cells showing degeneration; these were located throughout the nodule tissue and were often adjacent to healthy infected cells. The rhizobia appeared to infect new nodule cells via infection threads, which were abundant both intercellularly and intracellularly in young, mature, and degenerating host nodule cells. Strains of R. leguminosarum biovar viceae and Rhizobium meliloti were unable to induce nodule-like structures on M. atropurpureum. Key words: Macroptilium, Bradyrhizobium, Rhizobium, microscopy, nodule, structure.


1982 ◽  
Vol 60 (6) ◽  
pp. 746-757 ◽  
Author(s):  
Christa R. Schwintzer ◽  
Alison M. Berry ◽  
Lynn D. Disney

Myrica gale L. populations growing in central Massachusetts were observed throughout the ice-free season. Nitrogenase activity appeared in mid-May shortly after budbreak, was at its maximum between late June and mid-August, and disappeared in late October after all leaves had fallen. Growth of overwintering nodules began in early May and was largely complete by mid-July. Most nodules (88%) lived for 3 years or less and 61% of the nodule biomass present in autumn was produced during the current season.Colonizing hyphae of the Frankia sp. endophyte were seen throughout the year in partially expanded cortical cells near the nodule lobe apex. Vesicles first appeared in mature cortical cells coincident with the onset of nitrogenase activity in mid-May, occupied the bulk of the infected tissue during the summer, and disappeared as nitrogenase activity ceased in late October. Evidence is presented that the vesicles are the site of nitrogenase activity and are newly produced each season in freshly formed nodule lobe tissue. Sporangia frequently formed in mature infected cells in nodules at one site but were rare at another. The processes described here in M. gale are probably typical of winter-deciduous actinorhizal plants.


2001 ◽  
Vol 14 (7) ◽  
pp. 857-866 ◽  
Author(s):  
Mengsheng Gao ◽  
Wim D'Haeze ◽  
Riet De Rycke ◽  
Beata Wolucka ◽  
Marcelle Holsters

A nonpolar mutation was made in the oac2 gene of Azorhizobium caulinodans. oac2 is an ortholog of the Salmonella typhimurium rfbD gene that encodes a dTDP-L-rhamnose synthase. The knockout of oac2 changed the lipopolysaccharide (LPS) pattern and affected the extracellular polysaccharide production but had no effect on bacterial hydrophobicity. Upon hot phenol extraction, the wild-type LPS partitioned in the phenol phase. The LPS fraction of ORS571-oac2 partitioned in the water phase and had a reduced rhamnose content and truncated LPS molecules on the basis of faster migration in detergent gel electrophoresis. Strain ORS571-oac2 induced ineffective nodule-like structures on Sesbania rostrata. There was no clear demarcation between central and peripheral tissues, and neither leghemoglobin nor bacteroids were present. Light and electron microscopy revealed that the mutant bacteria were retained in enlarged, thick-walled infection threads. Infection centers emitted a blue autofluorescence under UV light. The data indicate that rhamnose synthesis is important for the production of surface carbohydrates that are required to sustain the compatible interaction between A. caulinodans and S. rostrata.


Sign in / Sign up

Export Citation Format

Share Document