Boron uptake by the root cortex symplast of tomato and pea plants: evidence for low-boron-induced active transport

2007 ◽  
Vol 34 (12) ◽  
pp. 1130 ◽  
Author(s):  
Jasna Savic ◽  
Miroslav Nikolic ◽  
Slaven Prodanovic ◽  
Volker Römheld

The objective of this research was to test the hypothesis of the existence of an active boron (B) uptake into the cortical cells induced by low B supply. The uptake of B was characterised in two tomato (Lycopersicon esculentum Mill.) genotypes: B-efficient FER and B-inefficient mutant T3238. In addition, pea (Pisum sativum L.) was used as an anatomically appropriate model for obtaining intact root cortex. Time course uptake studies in tomato indicate that the B-inefficient mutant was defective by the absence of an active low-B-induced uptake system in the cortex. Pea roots showed up to 10-fold higher accumulation of B into the cortex symplast at low (0.5 µm) external B supply in comparison to adequate B (10 µm) supply. Also, low-B-induced uptake of B was strongly inhibited by 2,4-dinitrophenol, indicating a metabolic energy-derived active component of B uptake at low external supply. Uptake of B by the cortical cells of tomato and pea plants appears to be a combination of both passive and active components, with a passive component prevailing at higher external B. An active component of B uptake suppressed by either adequate or high B supply might indicate a downregulation of plasma membrane-associated B transporter(s) in root cortical cells.

Author(s):  
Jonathan Realmuto ◽  
Glenn Klute ◽  
Santosh Devasia

There is increasing interest in powered prosthesis. To reduce energy, power, and torque requirements on the active input, current systems, such as powered ankle prosthetics, utilize a combination of passive and active components. By storing and releasing energy during gait, the passive component reduces the energy/power/torque requirements of the active component. Therefore, it is advantageous to maximize the use of the passive component for achieving the desired motion. Typically, the passive component utilizes elastic elements such as springs, which cannot be easily adjusted to achieve a desired optimal nonlinear response. In this work, we report the use of a cam profile to achieve a general desired nonlinear response. The results show that the added design flexibility (to achieve nonlinear response of the passive element) can substantially reduce the energy/power/torque requirement of the active component.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Youssef Jaber ◽  
Ericber Jimenez Francisco ◽  
Miles F. Bartlett ◽  
Liam F. Fitzgerald ◽  
Jane A. Kent ◽  
...  

Abstract A magnetic resonance (MR) compatible ergometer has been developed to study contracting lower limb muscles during acquisition of MR spectroscopy data, a technique to noninvasively measure metabolic energy in muscle tissue. Current active and passive MR-compatible ergometer designs lack torque or velocity control to allow precise mechanical measurements during isotonic and isokinetic contractions; incorporating load and velocity controllers while maintaining MR-compatibility is the main challenge. Presented in this paper is the design and evaluation of an MR-compatible ergometer designed to control knee torque or velocity up to 420 N·m and 270 deg/s and is able to operate in a 3 Tesla magnetic field. The ergometer comprising of a passive component with no electronics or ferrous materials is located inside the bore of the scanner. The active component with the electronics and actuator located outside of the magnetic field in an adjacent room. The active components connect to the passive components via a cable that passes through the waveguide, a hole in the wall of the scanner room. System evaluations were performed and human subject evaluations were performed that measured the mechanical performance and show the mean percent errors below 9% in isotonic and 2% in isokinetic conditions.


2001 ◽  
Vol 21 (1) ◽  
pp. 354-366 ◽  
Author(s):  
Carolina Sousa ◽  
Christina Johansson ◽  
Celine Charon ◽  
Hamid Manyani ◽  
Christof Sautter ◽  
...  

ABSTRACT A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin geneenod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5′ and 3′ regions ofenod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.


Biologia ◽  
2006 ◽  
Vol 61 (1) ◽  
Author(s):  
Ján Pavlovkin ◽  
Miroslava Luxová ◽  
Ingrid Mistríková ◽  
Igor Mistrík

AbstractIn this study, the effects of Cd on root growth, respiration, and transmembrane electric potential (E m) of the outer cortical cells in maize roots treated with various Cd concentrations (from 1 µM to 1 mM) for several hours to one week were studied. The E m values of root cells ranged between −120 and −140 mV and after addition of Cd they were depolarized immediately. The depolarization was concentration-dependent reaching the value of diffusion potential (E D) when the Cd concentration exceeded 100 µM. The values of E D ranged between −65 to −68 mV (−66 ± 1.42 mV). The maximum depolarization of E m was registered approx. 2.5 h after addition of Cd to the perfusion solution and in some cases, partial (Cd > 100 µM) or complete repolarization (Cd < 100 µM) was observed within 8–10 h of Cd treatment. In the time-dependent experiments (0 to 168 h) shortly after the maximum repolarization of E m a continuous concentration-dependent decrease of E m followed at all Cd concentrations. Depolarization of E m was accompanied by both increased electrolyte leakage and inhibition of respiration, especially in the range of 50 µM to 1 mM Cd, with the exception of root cells treated with 1 and 10 µM Cd for 24 and 48 h. Time course analysis of Cd impact on root respiration revealed that at higher Cd concentrations (> 50 µM) the respiration gradually declined (∼ 6 h) and then remained at this lowest level for up to 24 h.All the Cd concentrations used in this experiment induced significant inhibition of root elongation and concentrations higher than 100 µM stopped the root growth within the first day of Cd treatment. Our results suggest that Cd does not cause irreversible changes in the electrogenic plasma membrane H+ ATPase because fusicoccin, an H+ ATPase activator diminished the depolarizing effect of Cd on the E m. The depolarization of E m in the outer cortical cells of maize roots was the result of a cumulative effect of Cd on ATP supply, plasmalemma permeability, and activity of H+ ATPase.


2014 ◽  
Vol 44 (9) ◽  
pp. 1013-1019 ◽  
Author(s):  
Teija Ruuhola ◽  
Tarja Lehto

The role of mycorrhizas in the uptake of boron (B) is still poorly known; it has been suggested that ectomycorrhizas (ECM) may either increase B uptake or sequester B in forms unavailable for plants. We examined whether ECM infection affects the B uptake compared with nonmycorrhizal plants and whether two ECM fungal species differ in this respect. We inoculated silver birch (Betula pendula Roth) seedlings with either Paxillus involutus (Batsch) Fr. or Laccaria sp. Seedlings were fertilized with a complete nutrient solution including B. The whole-plant specific B uptake rates were slightly higher in Laccaria-inoculated seedlings than in noninoculated seedlings. Laccaria seedlings accumulated B transiently in their roots, which led to an increase in the specific leaf uptake rate of B in a later phase. Colonization of seedlings by Paxillus was low, and this fungus did not affect B uptake or allocation. The main result was that mycorrhizas did not affect B uptake and translocation negatively. An ability to accumulate B in mycorrhizas transiently might even make plants more tolerant to temporary B deficiency as they are not so strictly dependent on a continuous external B supply. However, the possibility of retention at very low B availability remains to be studied.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A572-A572
Author(s):  
Samra Turajlic ◽  
Mariam Jamal-Hanjani ◽  
Andrew Furness ◽  
Ruth Plummer ◽  
Judith Cave ◽  
...  

BackgroundEx-vivo expanded tumour infiltrating lymphocytes (TIL) show promise in delivering durable responses among several solid tumour indications. However, characterising, quantifying and tracking the active component of TIL therapy remains challenging as the expansion process does not distinguish between tumour reactive and bystander T-cells. Achilles Therapeutics has developed ATL001, a patient-specific TIL-based product, manufactured using the VELOS™ process that specifically targets clonal neoantigens present in all tumour cells within a patient. Two Phase I/IIa clinical trials of ATL001 are ongoing in patients with advanced Non-Small Cell Lung Cancer, CHIRON (NCT04032847), and metastatic or recurrent melanoma, THETIS (NCT03997474). Extensive product characterisation and immune-monitoring are performed through Achilles’ manufacturing and translational science programme. This enables precise quantification and characterisation of the active component of this therapy – Clonal Neoantigen T cells (cNeT) – during manufacture and following patient administration, offering unique insight into the mechanism of action of ATL001 and aiding the development of next generation processes.MethodsATL001 was manufactured using procured tumour and matched whole blood from 8 patients enrolled in the THETIS (n=5) and CHIRON (n=3) clinical trials. Following administration of ATL001, peripheral blood samples were collected up to week 6. The active component of the product was detected via re-stimulation with clonal neoantigen peptide pools and evaluation of IFN-γ and/or TNF-α production. Deconvolution of individual reactivities was achieved via ELISPOT assays. Immune reconstitution was evaluated by flow cytometry. cNeT expansion was evaluated by restimulation of isolated PBMCs with peptide pools and individual peptide reactivities (ELISPOT).ResultsThe median age was 57 (range 30 – 71) and 6/8 patients were male. The median number of previous lines of systemic anti-cancer treatment at the time of ATL001 dosing was 2.5 (range 1 – 5). Proportion of cNeT in manufactured products ranged from 0.20% - 77.43% (mean 26.78%) and unique single peptide reactivities were observed in 7 of 8 products (range 0 – 28, mean 8.6). Post-dosing, cNeTs were detected in 5/8 patients and cNeT expansion was observed in 3/5 patients.ConclusionsThese data underscore our ability to sensitively detect, quantify and track the patient-specific cNeT component of ATL001 – during manufacture and post dosing. As the dataset matures, these metrics of detection and expansion will be correlated with product, clinical and genomic characteristics to determine variables associated with peripheral cNeT dynamics and clinical response.ReferencesNCT04032847, NCT03997474Ethics ApprovalThe first 8 patients described have all been located within the UK and both trials (CHIRON and THETIS) have been approved by the UK MHRA (among other international bodies, e.g FDA). Additionally, these trials have been approved by local ethics boards at active sites within the UK. Patient‘s are fully informed by provided materials and investigators prior to consenting to enrol into either ATL001 trial.


Author(s):  
MAHANI ◽  
MICHELLE ◽  
YANA CAHYANA ◽  
AHMAD SULAEMAN ◽  
HARDINSYAH ◽  
...  

Objective: The aim of this study is to map out the distribution and composition of the main active components found in stingless bee propolis from various regions in Indonesia. Methods: The stingless bee propolis used was obtained from ten different provinces in Indonesia and the active components analysis using Gas Chromatography-Mass Spectrometer (GC-MS) pyrolyzer. Results: This study found 85 main types of active components with concentrations of ≥ 1%. The most frequently found active component was alpha-d-glucopyranoside, which had an average concentration of 28.20%. Conclusion: There were differences between the main active components found in 14 samples of stingless bee propolis obtained from 10 provinces in Indonesia, which was due to the variety of bee species and plant origin.


MRS Advances ◽  
2021 ◽  
Author(s):  
Nadia Rodriguez ◽  
Anil K. Bastola ◽  
Marc Behl ◽  
Patricia Soffiatti ◽  
Nick P. Rowe ◽  
...  

Abstract Inspired by the interesting functional traits of a climbing cactus, Selenicereus setaceus, found in the forest formations of Southeastern Brazil, we formulated a hypothesis that we can directly learn from the plants to develop multi-functional artificial systems by means of a multi-disciplinary approach. In this context, our approach is to take advantage of 3D-printing techniques and shape-memory hydrogels synergistically to mimic the functional traits of the cactus. This work reports on the preliminary investigation of cactus-inspired artificial systems. First, we 3D-printed soft polymeric materials and characterized them, which defines the structure and is a passive component of a multi-material system. Second, different hydrogels were synthesized and characterized, which is an active component of a multi-material system. Finally, we investigated how the hydrogel can be integrated into the 3D-printed constructs to develop artificial functional systems. Graphic abstract


2021 ◽  
Vol 16 (8) ◽  
pp. 1934578X2110387
Author(s):  
Ji-le Lan ◽  
Ye-ping Ruan ◽  
Zhu-jun Mao ◽  
Li-yan You ◽  
Zhong Chen

Fengyin Decoction (FYD) is a traditional Chinese medicine for the treatment of epilepsy and wind paralysis. However, the potential antiepileptic active component in rhubarb (which is the most effective Chinese medicine in FYD) has not been defined. In this study, we analyzed and predicted the potential quality marker (Q-marker) of rhubarb in FYD based on fingerprint and network pharmacology. The fingerprints of FYD and rhubarb were established to analyze the transmission law of active components. Ultra-high performance liquid chromatography (UPLC) was used to study quantitatively the active components obtained by different extraction methods of FYD. Combined with network pharmacological analysis, a “components-targets-pathways” network was constructed to predict the potential Q-marker. Eight peaks were identified by FYD fingerprint: aloe-emodin, rhein, emodin, chrysophanol, physcion, cinnamaldehyde, 6-gingerol, and glycyrrhizic acid ammonium salt. The determination of the 8 active components in FYD with different extraction methods suggested that rhubarb anthraquinone may be a potential antiepileptic active component. Twelve core components, 19 targets, and 21 pathways of rhubarb were screened by network pharmacology, which further demonstrated that rhubarb played a role mainly through these components, targets, and pathways. We preliminarily predicted that compounds such as rhubarb anthraquinones were a potential Q-marker. The UPLC fingerprint and the content determination method of the 8 components established in this study were effective and feasible. The findings in this study may provide a reference for further study of quality control of FYD and lay a theoretical foundation for the study of its action mechanism. In addition, our study may provide a novel idea for the study of the Q-marker of other classical compound traditional Chinese medicines.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Sajid Masood ◽  
Xue Qiang Zhao ◽  
Ren Fang Shen

AbstractThe present study was carried out to investigate how plant growth-promoting bacteria (PGPB) influence plant growth and uptake of boron (B) and phosphorus (P) in rapeseed (Brassica napus). Rapeseed was subjected to control, B, P and B + P treatments, either with or without B. pumilus (PGPB) inoculation, and grown in pot culture for 6 weeks. In the absence of B. pumilus, the addition of B, P or both elements improved the growth of rapeseed compared with the control. Interestingly, B. pumilus inoculation inhibited plant growth and enhanced B uptake under B and B + P but not under control and P conditions. In addition, B. pumilus inoculation decreased the pH of soil under B and B + P supplies. Bacillus pumilus inoculation thus increased rapeseed B uptake and inhibited growth under B supply, which suggests that the effects of PGPB on rapeseed growth depend on the addition of B to soil. Bacillus pumilus inoculation may therefore be recommended for the enhancement of rapeseed B levels in B-deficient soils but not in B-sufficient ones.


Sign in / Sign up

Export Citation Format

Share Document