Angiotensin II downregulates ACE2-mediated enhancement of MMP-2 activity in human cardiofibroblasts

2013 ◽  
Vol 91 (6) ◽  
pp. 435-442 ◽  
Author(s):  
Tang-Ching Kuan ◽  
Mu-Yuan Chen ◽  
Yan-Chiou Liao ◽  
Li Ko ◽  
Yi-Han Hong ◽  
...  

Angiotensin converting enzyme II (ACE2) is a component of the renin-angiotensin system (RAS) that negatively regulates angiotensin II (Ang II). Ang II, in turn, affects the expression of matrix metalloproteinases (MMPs) to induce heart remodeling. The specific mechanisms by which ACE2 regulates MMP-2, however, remain unclear. The aim of this study was to investigate the regulatory relationships between Ang II, ACE2, and MMP-2. ACE2 expression was upregulated and downregulated in human cardiofibroblasts (HCFs) by lentiviral infection. Effects on MMP-2 activity, shed ACE2 activity, extracellular signal-regulated kinase (ERK) signaling pathway, and ADAM metallopeptidase domain 17 (ADAM17) expression were assessed. ACE2 increased MMP-2 activity, and Ang II inhibited this effect through the Ang II type-1 receptor (AT1R) and ERK1/2 signaling pathway. Ang II also reduced the effect of ACE2 on ERK1/2 levels, the activity of shed ACE2, and adam17 expression in HCFs. Additionally, these Ang II-mediated reductions could be attenuated by AT1R antagonist valsartan. In conclusion, these data help to clarify how ACE2 and Ang II interact to regulate MMP-2 and control tissue remodeling in heart disease.

2012 ◽  
Vol 13 (3) ◽  
pp. 360-366 ◽  
Author(s):  
Pieter M Jansen ◽  
Johannes Hofland ◽  
Anton H van den Meiracker ◽  
Frank H de Jong ◽  
AH Jan Danser

Introduction: Transgenic rats expressing the human (pro)renin receptor (h(P)RR) have elevated plasma aldosterone levels despite unaltered levels, in plasma and adrenal, of renin and angiotensin II. Materials and methods: To investigate whether renin/prorenin–(P)RR interaction underlies these elevated aldosterone levels, the effect of (pro)renin on steroidogenesis was compared with that of angiotensin II in two (P)RR-expressing human adrenocortical cell lines, H295R and HAC15. Angiotensin II rapidly induced extracellular signal-regulated kinase (ERK) phosphorylation and increased the expression of STAR, CYP21A2, CYP11B2, and CYP17A1 at 6 and 24 hours, whereas the expression of CYP11A1 and HSD3B2 remained unaltered. Incubation with renin or prorenin at nanomolar concentrations had no effect on the expression of any of the steroidogenic enzymes tested, nor resulted in ERK phosphorylation. Angiotensin II, but not renin or prorenin, induced aldosterone production. Conclusion: Although the (P)RR is present in adrenocortical cells, renin and prorenin do not elicit ERK phosphorylation nor directly affect steroid production via this receptor at nanomolar concentrations. Thus, direct (pro)renin–(P)RR interaction is unlikely to contribute to the elevated aldosterone levels in human (P)RR transgenic rats. This conclusion also implies that the aldosterone rise that often occurs during prolonged renin–angiotensin system blockade is rather due to the angiotensin II ‘escape’ during such blockade.


1993 ◽  
Vol 265 (6) ◽  
pp. E860-E865 ◽  
Author(s):  
L. A. Cassis

The role of angiotensin II (ANG II) in increased sympathetic neuroeffector mechanisms observed in cold-induced thermogenesis of brown adipose tissue (BAT) was examined. Cold exposure (4 degrees C) for 7 days resulted in an increase in interscapular fat (ISF) ANG II content expressed per gram wet weight or per lobe of ISF, without concomitant changes in plasma components of the renin-angiotensin system. Additionally, in ISF slices preloaded with [3H]norepinephrine (NE), ANG II (10 nM) resulted in an increase (3-fold) in evoked 3H overflow from ISF slices from cold-exposed rats compared with ambient temperature controls. However, although basal 3H outflow was increased (2-fold) in ISF slices from cold-exposed rats, evoked 3H overflow was not different between ISF slices from cold-exposed and control rats. Specific neuronal uptake of [3H]NE in ISF slices from cold-exposed rats was decreased by 64%. Administration of the non-peptide AT1-receptor antagonist losartan to cold-exposed rats resulted in complete inhibition of ANG II-mediated presynaptic facilitation of evoked 3H overflow from ISF slices. However, losartan administration had no effect on cold-induced increases in ANG II content, protein content, and decreases in neuronal [3H]NE uptake in ISF. Results from these studies suggest that cold-induced thermogenesis of BAT results in alterations in presynaptic ANG II facilitation of NE release and defects in removal of NE from the synaptic cleft (neuronal uptake), both of which would enhance sympathetic nervous system-mediated thermogenesis. Furthermore, these results demonstrate a role for ANG II in enhanced sympathetic activity of cold-induced thermogenesis in BAT.


2008 ◽  
Vol 295 (2) ◽  
pp. H835-H841 ◽  
Author(s):  
Zsolt Bagi ◽  
Nora Erdei ◽  
Akos Koller

Previously, we found that high intraluminal pressure leads to production of reactive oxygen species (ROS) and also upregulates several components of the renin-angiotensin system in the wall of small arteries. We hypothesized that acute exposure of arterioles to high intraluminal pressure in vitro via increasing ROS production enhances the functional availability of type 1 angiotensin II (Ang II) receptors (AT1 receptors), resulting in sustained constrictions. In arterioles (∼180 μm) isolated from rat skeletal muscle, Ang II elicited dose-dependent constrictions, which decreased significantly by the second application [maximum (max.): from 59% ± 4% to 26% ± 5% at 10−8 M; P < 0.05] in the presence of 80 mmHg of intraluminal pressure. In contrast, if the arterioles were exposed to high intraluminal pressure (160 mmHg for 30 min), Ang II-induced constrictions remained substantial on the second application (max.: 51% ± 3% at 10−8 M). In the presence of Tiron and polyethylene glycol (PEG)-catalase, known to reduce the level of superoxide anion and hydrogen peroxide (H2O2), second applications of Ang II evoked similarly reduced constrictions, even after high-pressure exposure (29% ± 4% at 10−8 M). Furthermore, when arterioles were exposed to H2O2 (for 30 min, 10−7 M, at normal 80 mmHg pressure), Ang II-induced constrictions remained substantial on second applications (59% ± 5% at 10−8 M). These findings suggest that high pressure, likely via inducing H2O2 production, increases the functional availability of AT1 receptors and thus enhances Ang II-induced arteriolar constrictions. We propose that in hypertension–regardless of etiology–high intraluminal pressure, via oxidative stress, enhances the functional availability of AT1 receptors augmenting Ang II-induced constrictions.


2011 ◽  
Vol 7 (4) ◽  
pp. 254 ◽  
Author(s):  
Giuliano Tocci ◽  
Lorenzo Castello ◽  
Massimo Volpe ◽  
◽  
◽  
...  

The renin–angiotensin system (RAS) has a key role in the maintenance of cardiovascular homeostasis, and water and electrolyte metabolism in healthy subjects, as well as in several diseases including hypertension, left ventricular hypertrophy and dysfunction, coronary artery disease, renal disease and congestive heart failure. These conditions are all characterised by abnormal production and activity of angiotensin II, which represents the final effector of the RAS. Over the last few decades, accumulating evidence has demonstrated that antihypertensive therapy based on angiotensin II receptor blockers (ARBs) has a major role in the selective antagonism of the main pathological activities of angiotensin II. Significant efforts have been made to demonstrate that blocking the angiotensin II receptor type 1 (AT1) subtype receptors through ARB-based therapy results in proven benefits in different clinical settings. In this review, we discuss the main benefits of antihypertensive strategies based on ARBs in terms of their efficacy, safety and tolerability.


2016 ◽  
Vol 311 (2) ◽  
pp. H404-H414 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Sarfaraz Ahmad ◽  
Jasmina Varagic ◽  
Che Ping Cheng ◽  
Leanne Groban ◽  
...  

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1–12) [Ang-(1–12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1–12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


1985 ◽  
Vol 248 (3) ◽  
pp. R371-R377 ◽  
Author(s):  
B. S. Huang ◽  
M. J. Kluger ◽  
R. L. Malvin

The thermoregulatory role of brain angiotensin II (ANG II) was tested by intracerebroventricular (IVT) infusion of ANG II or the converting enzyme inhibitor SQ 20881 (SQ) in 15 conscious sheep. Deep body temperature decreased 0.30 +/- 0.07 degree C (SE) during the 3-h period of IVT ANG II (25 ng/min) infusion (P less than 0.05) and increased 0.50 +/- 0.13 degree C during IVT SQ (1 microgram/min) infusion (P less than 0.01). To determine whether the rise in body temperature after IVT SQ infusion might be the result of a central renin-angiotensin system (RAS), SQ was infused IVT in five conscious sheep 20 h after bilateral nephrectomy. This resulted in a significant rise in body temperature of 0.28 +/- 0.05 degree C (P less than 0.05). When vasopressin antidiuretic hormone (ADH) was infused intravenously at the same time of IVT SQ infusion, the rise in temperature was depressed, but ADH did not lower the temperature below basal. IVT dopamine (20 micrograms/min) increased body temperature by 0.40 +/- 0.04 degree C (P less than 0.01), which was qualitatively similar to the result with IVT SQ. These data support the hypothesis that endogenous brain ANG II may play a role in thermoregulation. Furthermore, plasma ADH level, regulated in part by brain ANG II, is probably not the mediator of that thermoregulation. The similar effects of IVT dopamine and SQ on body temperature strengthen the hypothesis that dopamine may be involved in the central action of brain ANG II.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


1985 ◽  
Vol 248 (5) ◽  
pp. R541-R548
Author(s):  
B. S. Huang ◽  
R. L. Malvin ◽  
R. J. Grekin

The effects of intracerebroventricular (IVT) infusion of angiotensin II (ANG II), the converting enzyme inhibitor SQ 20881, and dopamine were studied in 15 conscious Na-depleted sheep. IVT ANG II (25 ng/min) significantly increased plasma aldosterone (163 +/- 24%) and vasopressin (ADH) (533 +/- 100%). Plasma renin activity (PRA) was decreased to 64 +/- 10% of basal. IVT SQ (1 microgram/min) decreased aldosterone to 70 +/- 10% and ADH to 55 +/- 9% of basal. PRA increased to 124 +/- 10%. There were no significant changes in plasma Na, K, or cortisol levels nor in mean arterial or intracranial pressure after either infusion. Increasing the dose of SQ to 10 micrograms/min resulted in an increased magnitude of change in the same variables. IVT SQ (1 microgram/min) significantly decreased aldosterone level in five nephrectomized sheep. The responses to IVT dopamine (20 micrograms/min) were qualitatively similar to those elicited by IVT SQ. These data support the existence of an endogenous brain renin-angiotensin system (RAS) independent of the renal RAS. ANG II acts centrally to regulate plasma ADH, aldosterone, and PRA levels. The similarity of the responses to SQ and dopamine suggests that a dopaminergic pathway may be involved in these responses.


Sign in / Sign up

Export Citation Format

Share Document