MicroRNA-1-3p inhibits the proliferation and migration of oral squamous cell carcinoma cells by targeting DKK1

2018 ◽  
Vol 96 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Zhenshi Wang ◽  
Jiaolong Wang ◽  
Zhihua Chen ◽  
Kun Wang ◽  
Lianshui Shi

We investigated the functional role and mechanism of miR-1-3p and DKK1 in oral squamous cell carcinoma (OSCC) cells. The level of miR-1-3p and DKK1 expression were detected in OSCC tissues and cells using reverse-transcription – quantitative PCR and Western blot. A dual luciferase reporter gene assay was applied to confirm the targeting relationship between miR-1-3p and DKK1. Functional assays, including MTT, Transwell, colony formation, and flow cytometry analysis were conducted to verify their effect on cell progressions. MTT, colony formation, and Transwell assays indicated that the proliferation, migration, and invasion of SCC-4 cells was impaired with high miR-1-3p expression but promoted with high DKK1 expression. The results from cell cycle analysis and annexin-V–PI assays for apoptosis suggested that miR-1-3p suppressed the transit of SCC-4 cells from G0/G1 to S and induced apoptosis. In summary, miR-1-3p suppressed the progression of OSCC by inhibiting DKK1 expression.

2020 ◽  
Vol 68 (7) ◽  
pp. 1282-1288
Author(s):  
Hui Li ◽  
Junhong Jiang

Oral squamous cell carcinoma (OSCC) is a lethal malignancy. It is reportedly demonstrated that long non-coding RNA (lncRNA) participates in the development of OSCC. The purpose of this study was to clarify the function and possible molecular mechanisms of lncRNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) in OSCC. Quantitative real-time PCR (qRT-PCR) was adopted to investigate MCM3AP-AS1 expressions in OSCC tissues and cells. The proliferation, migration and invasion of HN-6 and SCC-9 cells were probed by cell counting kit-8 and Transwell assays, respectively. Dual luciferase reporter gene assay, Pearson’s correlation analysis, qRT-PCR and western blot were used to detect the binding relationship among miR-204-5 p, MCM3AP-AS1 and forkheadbox C1 (FOXC1). MCM3AP-AS1 expression was elevated in OSCC tissues and cell lines. Overexpression of MCM3AP-AS1 facilitated the proliferation, migration and invasion of OSCC cells, while the knockdown of MCM3AP-AS1 suppressed these malignant phenotypes. Besides, MCM3AP-AS1 impeded miR-204-5 p by binding with it. MCM3AP-AS1 could also upregulate the expression of FOXC1 via repressing miR-204-5 p.MCM3AP-AS1 promotes the progression of OSCC cells by adsorbing miR-204-5 p and upregulating FOXC1 expressions.


2020 ◽  
Author(s):  
Yue Zhao ◽  
Rui Yao

Abstract Objective The aim of the present study was to investigate the roles and molecular mechanism of long non-coding RNA (lncRNA) HOXA-AS3 in the progression of oral squamous cell carcinoma (OSCC). Methods The expression of HOXA-AS3 and miR-218-5p was detected in OSCC tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and colony formation assays were used to examine the effects of HOXA-AS3 and miR-218-5p on the proliferation of OSCC cells. Luciferase reporter gene assay was used to confirm the directly binding condition between lncRNA HOXA-AS3 and miR-218-5p in OSCC cells. RNA immunoprecipitation assay was employed to verify the interaction between HOXA-AS3 and miR-218-5p. Results The relative expression of lncRNA HOXA-AS3 was observably upregulated in OSCC tissues and cell lines compared with the para-cancerous tissues and normal human oral keratinocyte (NHOK), respectively. Knockdown of HOXA-AS3 significantly inhibited the proliferation and colony formation of OSCC cells. Bioinformatics analysis and luciferase reporter assay showed that HOXA-AS3 directly bound to miR-218-5p. Moreover, the expression of miR-218-5p was negatively regulated by HOXA-AS3, and there was an inverse correlation between them. Silencing miR-218-5p reversed the inhibitory effect of lncRNA HOXA-AS3 knockdown on the proliferative potential of OSCC cells. Conclusion In summary, our study illustrated lncRNA HOXA-AS3 promoted cancer cell proliferation in OSCC possibly by sponging miR-218-5p for the first time, which provides a new target or a potential diagnostic biomarker of the treatment for OSCC.


2020 ◽  
Author(s):  
Yue Zhao ◽  
Rui Yao

Abstract Objective: The aim of the present study was to investigate the roles and molecular mechanism of long non-coding RNA (lncRNA) HOXA-AS3 in the progression of oral squamous cell carcinoma (OSCC). Methods : The expression of HOXA-AS3 and miR-218-5p was detected in OSCC tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and colony formation assays were used to examine the effects of HOXA-AS3 and miR-218-5p on the proliferation of OSCC cells. Luciferase reporter gene assay was used to confirm the directly binding condition between lncRNA HOXA-AS3 and miR-218-5p in OSCC cells. Subsequently, a tumor xenograft model was used to determine the function of HOXA-AS3 in OSCC growth in vivo . Results: The relative expression of lncRNA HOXA-AS3 was observably upregulated in OSCC tissues and cell lines compared with the para-cancerous tissues and normal human oral keratinocyte (NHOK), respectively. Knockdown of HOXA-AS3 significantly inhibited the cell proliferation and colony formation of OSCC in vitro and in vivo . Bioinformatics and luciferase reporter assays showed that HOXA-AS3 directly bound to miR-218-5p. Moreover, the expression of miR-218-5p was negatively regulated by HOXA-AS3, and there was an inverse correlation between them. Silencing miR-218-5p reversed the inhibitory effect of lncRNA HOXA-AS3 knockdown on the proliferative potential of OSCC cells. Conclusion: In summary, our study illustrated lncRNA HOXA-AS3 promoted cancer cell proliferation in OSCC possibly by inhibiting miR-218-5p for the first time, which provides a new target or a potential diagnostic biomarker of the treatment for OSCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qian Chen ◽  
Jing Xu ◽  
Mingzhen Zhu

This study attempted to investigate possible molecular mechanism and role of miR-18a-5p in head and neck squamous cell carcinoma (HNSCC). Differential miRNAs and their possible targets were analyzed through TCGA database. By conducting qRT-PCR, miR-18a-5p was tested to be increased and SORBS2 was assessed to be downregulated in HNSCC cells. CCK-8, Transwell, and flow cytometry assays disclosed that miR-18a-5p facilitated HNSCC cell proliferation, migration, and invasion and repressed cell apoptosis. By dual-luciferase reporter gene assay, it was verified that miR-18a-5p had binding sites into SORBS2. Rescue experiments displayed that forced expression of SORBS2 restored the impact of miR-18a-5p overexpression on HNSCC cells. Collectively, our research preliminarily identified the promotion effect of miR-18a-5p/SORBS2 axis on malignant phenotypes of HNSCC cells. Our findings may provide a preclinical reference for HNSCC treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhou ◽  
Shuhong Zhang ◽  
Zhonghan Min ◽  
Zhongwei Yu ◽  
Huaiwei Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) are implicated in the development of oral squamous cell carcinoma (OSCC). The aim of current research is to elucidate the role and mechanism of circ_0011946 in the functional behaviors of OSCC cells. Methods Circ_0011946, microRNA (miR)-216a-5p, B cell lymphoma-2-like 2 protein (BCL2L2) abundances were exposed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation, migration, invasion and apoptosis were detected by MTT, colony formation assay, transwell, wound-healing and flow cytometry assays, respectively. Target correlation was tested by dual-luciferase reporter and RNA pull-down assays. An in vivo xenograft experiment was employed to investigate the function of circ_0011946 on tumor growth in vivo. Results Circ_0011946 and BCL2L2 levels were increased, while miR-216a-5p level was decreased in OSCC tissues and cells. Circ_0011946 knockdown impeded proliferation, migration, and invasion, but promoted apoptosis in OSCC cells. Circ_0011946 functioned as a sponge for miR-216a-5p, and BCL2L2 was targeted by miR-216a-5p. Besides, miR-216a-5p or BCL2L2 knockdown partly attenuated the inhibitory influences of circ_0011946 silence or miR-216a-5p overexpression on OSCC cell progression. Furthermore, circ_0011946 post-transcriptionally regulated BCL2L2 through sponging miR-216a-5p. Moreover, circ_0011946 knockdown constrained OSCC tumor growth in vivo. Conclusion Circ_0011946 silence repressed OSCC cell proliferation, migration, and invasion, but promoted apoptosis through the regulation of the miR-216a-5p/BCL2L2 axis.


2020 ◽  
Author(s):  
Ze-nan Zheng ◽  
Guang-zhao Huang ◽  
Qing-qing Wu ◽  
Heng-yu Ye ◽  
Wei-sen Zeng ◽  
...  

Abstract Background: Oral squamous cell carcinoma (OSCC) is the most common oral cancer. Our previous studies confirmed that dysregulation function of long non-coding RNA (lncRNA) AC007271.3 was associated with a poor prognosis and overexpression of AC007271.3 promoted cell proliferation, migration, invasion and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. However, the underlying mechanisms of AC007271.3 dysregulation remained obscure.Methods: Bioinformatics databases were used to predicted the potential down-stream targeted of AC007271.3 and verified by dual luciferase reporter assay. Core promoter region of AC007271.3 was identified by luciferase activity assay and the potential transcription factor on it was verified by ChIP assay. Western blot and qRT-PCR were performed to detect the protein and messenger RNA (mRNA) levels, respectively. Animal experiments confirmed the metastatic ability in vivo.Results: AC007271.3 functioned as competing endogenous RNA (ceRNA) by binding to miR-125b-2-3p and upregulated the expression of Slug, which is a direct target of miR-125b-2-3p. AC007271.3 enhanced the expression of Slug and inhibited the expression of E-cadherin to promote the migration and invasion in OSCC cells. The expression of AC007271.3 was promoted by canonical nuclear factor-κB (NF-κB) pathway. Conclusion: Our study showed that the classical NF-κB pathway-activated AC007271.3 regulates EMT by miR-125b-2-3p / Slug / E-cadherin axis to promote the development of OSCC, implicating it as a novel potential target for therapeutic intervention in this disease.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Tingting Jia ◽  
Yipeng Ren ◽  
Fengze Wang ◽  
Rui Zhao ◽  
Bo Qiao ◽  
...  

Abstract Objective: The current study aimed to investigate the functional roles and clinical significance of microRNA-148a (miR-148a) in the progression of oral squamous cell carcinoma (OSCC). Methods: Relative expression of miR-148a in OSCC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Chi-square test was performed to estimate the relationship between miR-148a expression and clinical characteristics of OSCC patients. Cell transfection was carried out using Lipofectamine® 2000. Biological behaviors of tumor cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and transwell assays. Bioinformatics analysis and luciferase reporter assay were used to identify the target genes of miR-148a. Protein expression was detected through Western blot analysis. Results: MiR-148a expression was obviously decreased in OSCC tissues and cells, and such down-regulation was closely correlated with lymph node metastasis (P=0.027) and tumor node metastasis (TNM) stage (P=0.001) of OSCC patients. miR-148a overexpression could significantly impair OSCC cell proliferation, migration and invasion in vitro (P<0.05 for all). Insulin-like growth factor-I receptor (IGF-IR) was a potential target of miR-148a. MiR-148a could inhibit ERK/MAPK signaling pathway through targeting IGF-IR. Conclusion: MiR-148a plays an anti-tumor role in OSCC and inhibits OSCC progression through suppressing ERK/MAPK pathway via targeting IGF-IR.


2020 ◽  
Vol 10 ◽  
Author(s):  
Yanling Wang ◽  
Bo Tao ◽  
Jiaying Li ◽  
Xiaoqun Mao ◽  
Wei He ◽  
...  

Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Min Su ◽  
Jinming Tang ◽  
Baihua Zhang ◽  
Desong Yang ◽  
Zhining Wu ◽  
...  

Abstract Background The long noncoding RNA gastric cancer associated transcript 3 (GACAT3) has been demonstrated to be implicated in the carcinogenesis and progression of many malignancies. However, GACAT3’s levels and role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. Methods GACAT3 amounts were investigated in ESCC tissues and cell lines by qPCR. Its biological functions were examined by CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, transwell assay, and xenograft model establishment. The relationship between GACAT3 and miR-149 was assessed by dual-luciferase reporter assay. Results GACAT3 amounts were elevated in ESCC tissue and cell specimens. Functional studies showed that GACAT3 silencing reduced the proliferation, migration and invasion of cultured ESCC cells, and decreased tumor growth in mice. Furthermore, GACAT could directly interact with miR-149. In addition, colony formation and invasion assays verified that GACAT3 promotes ESCC tumor progression through miR-149. Moreover, GACAT3 acted as a competing endogenous RNA (ceRNA) to modulate FOXM1 expression. Conclusions These findings indicate that GACAT3 functions as an oncogene by acting as a ceRNA for miR-149 to modulate FOXM1 expression in ESCC, suggesting that GACAT3 might constitute a therapeutic target in ESCC.


2021 ◽  
Author(s):  
Min Su ◽  
Jinming Tang ◽  
Baihua Zhang ◽  
Desong Yang ◽  
Zhining Wu ◽  
...  

Abstract Background The long noncoding RNA gastric cancer associated transcript 3 (GACAT3) has been demonstrated to be implicated in the carcinogenesis and progression of many malignancies. However, GACAT3’s levels and role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. Methods GACAT3 amounts were investigated in ESCC tissues and cell lines by qPCR. Its biological functions were examined by CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, transwell assay, and xenograft model establishment. The relationship between GACAT3 and miR-149 was assessed by dual-luciferase reporter assay. Results GACAT3 amounts were elevated in ESCC tissue and cell specimens. Functional studies showed that GACAT3 silencing reduced the proliferation, migration and invasion of cultured ESCC cells, and decreased tumor growth in mice. Furthermore, GACAT could directly interact with miR-149. In addition, colony formation and invasion assays verified that GACAT3 promotes ESCC tumor progression through miR-149. Moreover, GACAT3 acted as a competing endogenous RNA (ceRNA) to modulate FOXM1 expression. Conclusions These findings indicate that GACAT3 functions as an oncogene by acting as a ceRNA for miR-149 to modulate FOXM1 expression in ESCC, suggesting that GACAT3 might constitute a therapeutic target in ESCC.


Sign in / Sign up

Export Citation Format

Share Document