Determination of the tensile strength of unsaturated tailings using bending tests

2015 ◽  
Vol 52 (11) ◽  
pp. 1874-1885 ◽  
Author(s):  
Bibiana Narvaez ◽  
Michel Aubertin ◽  
Faustin Saleh-Mbemba

Bending tests were conducted on specimens of unsaturated tailings from three hard rock mines to evaluate their tensile strength. Saturated samples were prepared at an initial water content, w0, of 40% and then naturally dried under ambient conditions to pre-selected degrees of saturation, Sr, which can be related to the corresponding suction using the water retention curve. The basic interpretation of the bending tests results is based on an elastic–brittle behavior. The results show how the tensile strength, σt, of unsaturated tailings varies with water content, w (and Sr). The experimental data are also used to evaluate Young’s modulus in tension, Et, and to estimate the apparent cohesion, capp, as a function of Sr. Predictive equations are also applied to estimate the values of σt of unsaturated tailings using the water retention curve.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2626 ◽  
Author(s):  
Chao Chen ◽  
Xiaofei Yan ◽  
Qiang Xu ◽  
Song Yu ◽  
Yihan Ma ◽  
...  

Soil matric potential is an important parameter for agricultural and environmental research and applications. In this study, we developed a novel sensor to determine fast and in-situ the soil matric potential. The probe of the soil matric potential sensor comprises a perforated coaxial stainless steel cylinder filled with a porous material (gypsum). With a pre-determined gypsum water retention curve, the probe can determine the gypsum matric potential through measuring its water content. The matric potential of soil surrounding the probe is inferred by the reading of the sensor after the soil reaches a hydraulic equilibrium with the gypsum. The sensor was calibrated by determining the gypsum water retention curve using a pressure plate method and tested in three soil samples with different textures. The results showed that the novel sensor can determine the water retention curves of the three soil samples from saturated to dry when combined with a soil water content sensor. The novel sensor can respond fast to the changes of the soil matric potential due to its small volume. Future research could explore the application for agriculture field crop irrigation.


2020 ◽  
Author(s):  
Zampela Pittaki-Chrysodonta ◽  
Per Moldrup ◽  
Bo V. Iversen ◽  
Maria Knadel ◽  
Lis W. de Jonge

<p>The soil water retention curve (SWRC) at the wet part is important for understanding and modeling the water flow and solute transport in the vadose zone. However, direct measurements of SWRC is often laborious and time consuming processes. The Campbell function is a simple method to fit the measured data. The parameters of the Campbell function have been recently proven that can be predicted using visible-near-infrared spectroscopy. However, predicting the SWRC using image spectral data could be an inexpensive and fast method. In this study, 100-cm<sup>3</sup> soil samples from Denmark were included and the soil water content was measured at a soil-water matric potential from pF 1 [log(10)= pF 1] up to pF 3. The anchored Campbell soil-water retention function was selected instead of the original. Specifically, in this function the equation is anchored at the soil-water content at pF 3 (θ<sub>pF3</sub>) instead at the saturated water content. The image spectral data were correlated with the Campbell parameters [θ<sub>pF3</sub>, and the pore size distribution index (Campbell b). The results showed the potential of remote sensing to be used as a fast and alternative method for predicting the SWRC in a large-scale.</p>


2017 ◽  
Vol 167 ◽  
pp. 9-29 ◽  
Author(s):  
Golnaz Ebrahim-Zadeh ◽  
Hossein Bayat ◽  
Ali Akbar Safari Sinegani ◽  
Hamid Zare Abyaneh ◽  
Harry Vereecken

Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 840 ◽  
Author(s):  
D. Moret-Fernández ◽  
C. Peña-Sancho ◽  
M. V. López

Correct estimation of the soil-water retention curve (WRC) is of paramount importance to characterise the hydraulic behaviour of soils. This paper studies the influence of two different soil-wetting processes (waterlogging soil, WP; capillary rise to saturation, CRP) on the estimate of the WRC. The two procedures were applied on undisturbed loam soil samples with three degrees of soil structure: (i) consolidated soils under conventional tillage (CT), reduced tillage (RT) and no tillage (NT); (ii) freshly tilled soil under CT and RT; and (iii) CT and RT after secondary tillage plus some intense rainfalls events. WRCs were estimated with time-domain reflectometry (TDR) pressure cells and volumetric water content was measured at saturation conditions (for the WP method) and at pressure heads of 0.5, 1.5, 3, 5, 10, 50, 100, 500 and 1500 kPa. The same cores were used to determine the soil bulk density (ρb), which was subsequently used to estimate the saturated water content under CRP. The ρb value of the consolidated soil under NT was significantly higher (P < 0.001) than under CT and RT. No effect of the wetting process on the WRC of consolidated soils was observed. Only the freshly tilled soil samples under RT were significantly affected by the wetting process. In these cases, the water draining after WP collapsed the more unstable soil macropores and increased the volume of the smaller ones. However, this effect was minimised by the CRP method, which prevented the collapse of the more unstable soil pores. This work demonstrates that the soil-wetting process may have an important effect on the characterisation of the water-holding capacity on freshly tilled soils.


2013 ◽  
Vol 30 (11) ◽  
pp. 2585-2595 ◽  
Author(s):  
Bethany L. Scott ◽  
Tyson E. Ochsner ◽  
Bradley G. Illston ◽  
Christopher A. Fiebrich ◽  
Jeffery B. Basara ◽  
...  

Abstract Soil moisture data from the Oklahoma Mesonet are widely used in research efforts spanning many disciplines within Earth sciences. These soil moisture estimates are derived by translating measurements of matric potential into volumetric water content through site- and depth-specific water retention curves. The objective of this research was to increase the accuracy of the Oklahoma Mesonet soil moisture data through improved estimates of the water retention curve parameters. A comprehensive field sampling and laboratory measurement effort was conducted that resulted in new measurements of the percent of sand, silt, and clay; bulk density; and volumetric water content at −33 and −1500 kPa. These inputs were provided to the Rosetta pedotransfer function, and parameters for the water retention curve and hydraulic conductivity functions were obtained. The resulting soil property database, MesoSoil, includes 13 soil physical properties for 545 individual soil layers across 117 Oklahoma Mesonet sites. The root-mean-square difference (RMSD) between the resulting soil moisture estimates and those obtained by direct sampling was reduced from 0.078 to 0.053 cm3 cm−3 by use of the new water retention curve parameters, a 32% improvement. A &gt;0.15 cm3 cm−3 high bias on the dry end was also largely eliminated by using the new parameters. Reanalysis of prior studies that used Oklahoma Mesonet soil moisture data may be warranted given these improvements. No other large-scale soil moisture monitoring network has a comparable published soil property database or has undergone such comprehensive in situ validation.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 361
Author(s):  
Lesheng An ◽  
Kaihua Liao ◽  
Chun Liu

(1) Background: Simulation of soil water infiltration process and analysis of its influencing factors are important for water resources management. (2) Methods: In this study, the relative contributions of the soil water retention characteristics (SWRC) estimation, initial water content, and constant pressure head at upper boundary to the cumulative infiltration under various soil conditions were quantified based on the 1-D Richards’ equation and 900 scenarios. Scenario simulations were performed for two SWRC estimation methods (Jensen method and Rosetta); three different initial water contents (0.15, 0.20, and 0.25 cm3/cm3); five different constant pressure heads (0.5, 1, 2, 4, and 8 cm); and thirty soil samples with varying texture and bulk density. (3) Results: Rosetta representing the drying branch of the SWRC yielded higher simulated cumulative infiltration compared with the Jensen method representing the wetting branch of the SWRC. However, the Jensen method–predicted cumulative infiltration fluxes matched well with the measured values with a low RMSE of 0.80 cm. (4) Conclusions: The relative contribution of the SWRC estimation method to cumulative infiltration (19.1–72.2%) was compared to that of constant pressure head (14.0–65.5%), and generally greater than that of initial water content (2.2–29.9%). Findings of this study have practical significance for investigating the transport of water, nutrients, and contaminants in the unsaturated zone.


2016 ◽  
pp. 29-39
Author(s):  
Márcia Maria dos Anjos Mascarenha ◽  
Manoel Porfírio Cordão Neto ◽  
Tâmara Moraes Guimarães Silva

The suction-control techniques commonly used for laboratory studies of mechanical behaviour of unsaturated soils are much more time consuming than standard soil mechanics tests. In addition, few laboratories have the required apparatus for testing unsaturated soils. This paper proposes an alternative method of analysing hydromechanical behaviour of unsaturated soils with high-porosity. The method is divided in three tasks: 1) verification of the effect of void ratio changes on the water retention curve using filter paper; 2) determining water content changes by evaporation under the same test conditions; and 3) performing saturated and unsaturated consolidation tests. Unsaturated tests make use of samples that are less than 100% saturated and there is no suction control during the test. Therefore, only initial water content is known. Significant suction changes take place due to void closure and evaporation while testing. The results obtained using the proposed methodology showed the stress and suction path and enhance the understanding of the hydromechanical behaviour of unsaturated soils. The results also showed that analyses of water content alone cannot explain some unexpected results, such as: 20% initial water content samples present less deformation than 16% samples.


Sign in / Sign up

Export Citation Format

Share Document