Analysis of buried pipelines subjected to ground surface settlement and heave

2015 ◽  
Vol 52 (8) ◽  
pp. 1058-1071 ◽  
Author(s):  
George P. Kouretzis ◽  
Dimitrios K. Karamitros ◽  
Scott W. Sloan

This paper presents an analytical methodology for the calculation of internal forces and strains developing in continuous buried pipelines that cross geotechnically problematic areas and are susceptible to permanent ground surface settlement or heave. Material nonlinearity effects are introduced in the solution via an iterative procedure, while taking into account the effect of pipeline elongation on its response. The use of a versatile bilinear expression to describe the stress–strain response of the pipeline material renders the method appropriate for steel, high-density polyethylene (HDPE), concrete, and cast iron pipelines alike. Comparison of the analytical results against those from benchmark finite element analyses highlights the effectiveness of the simplified analysis. The method is a potential alternative to elaborate three-dimensional nonlinear numerical analyses that are often used in pipeline design practice, and offers ease-of-use with no expense in accuracy, at least for problems involving simple pipeline geometries.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Zou Jin-feng ◽  
Zhang Yan-jun ◽  
Dan Han-cheng

Considering the influence of group piles, a prediction model for three-dimensional ground surface settlement induced by circular metro tunnels excavation in incompressible rock masses is proposed based on the stochastic medium theory and the shear displacement method. The surface settlement caused by the metro tunnel opening is divided into two parts. One part is soil mass settlement caused by the metro tunnel opening and calculated by the stochastic medium theory. The other part is the settlement induced by the friction force between the group piles and the soil mass around the metro tunnel cross section and calculated by the shear displacement method. The three-dimensional prediction of the ground surface settlement is obtained by the linear superposition of the two parts. The validation of the proposed prediction approach is proved by comparing with the measured data and the numerical model of the double tunnels under thePuyuanoverpass where metro tunnels undercrossed group piles. The effects of buried depth, radial convergences, center distance of double tunnels, position and size of piles, and group piles are analyzed and discussed. The improved prediction approach can be applied to calculate the three-dimensional ground settlement, especially for the metro tunnels crossing through group piles.


2014 ◽  
Vol 522-524 ◽  
pp. 1689-1692
Author(s):  
Yan Hui Guo ◽  
Ke Peng Hou

Ground surface settlement induced by open-cut subway station has important implications for construction safety. Based on a subway station background of the line 3 west extension engineering of kunming metro line co.LTD. On the basis of geological survey results and indoor geotechnical mechanics experiment, the 3D geological model was established by three-dimensional finite difference method FLAC3D. Ground surface settlement Law and Retaining structure stability induced by subway station construction was analyzed. The analysis results provides a reference for structure optimization design and scientific construction of similar deep foundation pit engineering.


2013 ◽  
Vol 671-674 ◽  
pp. 1081-1086 ◽  
Author(s):  
Fei Fei Wang ◽  
Hui Ren Bai ◽  
Jing Jing Li

In order to study the Dalian Metro section 202(Cujin Road station-Chunguang Street station, which is shallowly buried and covered with plain fill)’s ground surface settlement, the monitoring measuring station was built during the construction. After 3 months’ measuring by precision level,the data shows that the maximum point is in the center line of the tunnel of the upper part. The settlement is about 25.66-31.82mm. This paper put forward the concept of the distance span ratio β, β effective value range was - 4 <β< 4,Surface subsidence is closely related with β, Severe surface subsidence stage is -2 <β< 2, Occupy whole deformation is 67.5-77.6%,settlement rate about 0.84-0.93mm/d, so should strengthen the monitoring frequency, Suggest increases site tour. Field test results and the ground surface settlement calculation model winkle are identical with each other; the monitoring results have important guiding significance and reference for Dalian subway and the similar shallow depth excavation tunnel construction.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2117
Author(s):  
Keke Li ◽  
Wenyuan Xu ◽  
Liang Yang

The deformation characteristics of a raised and widened old Chinese roadway on a soft soil foundation are investigated in this study via finite element numerical simulation. The rules of ground surface settlement, slope foot lateral displacement, and ground surface settlement evolution of the roadbed under three modes (one-time construction of an eight-lane expressway, widened four-lane expressway, and raised/widened four-lane expressway) are compared. The ground surface settlement process of the eight-lane road foundation, which is formed by first widening and then raising the road, is highly complex. The ground surface settlement curve under the old road foundation increases and then decreases. The lateral displacement of the slope foot also interacts with the widening and raising of the eight-lane roadbed foundation. The range of lateral displacement is 70.05, 42.58, 124.81, 104.54 mm. Fifteen years after construction, the total settlement of the raised and widened roadbed is much larger than that of the one built directly. The total settlement values at the center of the two roadbeds are 297.05 and 234.85 mm, respectively. This manuscript provides data support for the reconstruction and expansion of roads on soft soil foundations, for choosing appropriate construction methods to build roads, and for avoiding major road damage, which is of great significance to the construction of road infrastructure in the future.


2019 ◽  
Vol 9 (7) ◽  
pp. 1399 ◽  
Author(s):  
Wen Zhao ◽  
Peng-jiao Jia ◽  
Lin Zhu ◽  
Cheng Cheng ◽  
Jianyong Han ◽  
...  

Double-O-tube shield tunneling has attracted increasing attention because it offers cost-efficiency in underground construction. Prediction of ground surface settlement and the variety of additional stresses induced by shield construction is crucial to underground construction in metropolises since excessive settlement could trigger potential damage to the surrounding environment. The additional stresses induced by the propulsion of double-O-tube shields are calculated by means of the Mindlin’s equations of elasticity. The characteristics of additional stresses are analyzed with compound Gauss-Legendre integral arithmetic, and the frontal additional thrust, the lateral friction, and the ground loss are taken into account. Subsequently, based on field measurements, the maximum settlement coefficient and width of the settlement trough coefficient of the typical Peck formula are modified. The predictive curve of the Peck formula is closer to the engineering measured data than that of the typical formula. The cut-off functions of ground surface settlement caused by double-O-tube tunnel shield construction are proposed and can predict the shape of ground surface settlement, such as single peak or double peak. The correctness of the proposed functions is verified based on an engineering project.


1998 ◽  
Vol 35 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Chang-Yu Ou ◽  
Richard N Hwang ◽  
Wei-Jung Lai

This paper presents the surface settlement performance induced by the foamed type of earth pressure balance shield in contract CH218 of the Hsintien Line of the Taipei Rapid Transit System. The surface settlement characteristics caused by the single tunnel and by twin tunnels with reference to two sections spaced at 87 m are studied. Field observations indicate that the surface settlement trough due to the single tunnel can be represented by the normal distribution. The distance of the inflection point to the tunnel center and maximum surface settlement value are consistent with those found in the literature. The characteristics of the surface settlement trough are related to the type of the soil, particularly where the crown of the tunnel is located in a layered soil deposit. The ground surface settlement induced by twin tunnels was found to be larger than estimated using the principle of superposition.Key words: shield tunnelling, surface settlement, field observation.


Sign in / Sign up

Export Citation Format

Share Document