Analysis of Surface Subsidence Rule of the Shallow Subway Tunnel Construction

2013 ◽  
Vol 671-674 ◽  
pp. 1081-1086 ◽  
Author(s):  
Fei Fei Wang ◽  
Hui Ren Bai ◽  
Jing Jing Li

In order to study the Dalian Metro section 202(Cujin Road station-Chunguang Street station, which is shallowly buried and covered with plain fill)’s ground surface settlement, the monitoring measuring station was built during the construction. After 3 months’ measuring by precision level,the data shows that the maximum point is in the center line of the tunnel of the upper part. The settlement is about 25.66-31.82mm. This paper put forward the concept of the distance span ratio β, β effective value range was - 4 <β< 4,Surface subsidence is closely related with β, Severe surface subsidence stage is -2 <β< 2, Occupy whole deformation is 67.5-77.6%,settlement rate about 0.84-0.93mm/d, so should strengthen the monitoring frequency, Suggest increases site tour. Field test results and the ground surface settlement calculation model winkle are identical with each other; the monitoring results have important guiding significance and reference for Dalian subway and the similar shallow depth excavation tunnel construction.

2010 ◽  
Vol 168-170 ◽  
pp. 357-364
Author(s):  
Ji Feng Liu ◽  
Bo Liu ◽  
Hui Zhi Zhang

to evaluate the influence of soil-water coupled and shield tunnel construction induced around soil disturbance damage on ground surface settlement, the process of shield tunnel construction induced around soil disturbance is analyzed, the FLAC3D numerical simulation are carried out, and a newly-modified tunnelling-induced ground settlement calculation method based on disturbance degree of around soil and soil-water coupled is presented, and these methods are applied in case of Beijing Metro 10thLine. It is indicated that considering the influence of the shield tunnelling-induced around soil disturbance damage, and soil-water coupled induced soil properties weakening and the excess pore water pressure dissipating induced soil consolidation to the ground surface settlement are necessary, the calculating result of the newly-modified surface settlement prediction method, and the result FLAC3D numerical simulation all agree well with in-site observed data of Beijing Metro 10th Line.


2011 ◽  
Vol 117-119 ◽  
pp. 721-725 ◽  
Author(s):  
Cheng Ping Zhang ◽  
Li Min Li ◽  
He Li ◽  
Jian Chen Wang

Ground settlement, especially the ground surface settlement induced by subway tunneling is an important issue. However, there is no an agreed standard for controlling ground surface settlement during the subway construction at present. The control standard of ground surface settlement was studied using the methods of statistical analysis and numerical simulation based on the running tunnel in Beijing subway. According to the research results, a conclusion could be obtained that the ground surface settlement can be controlled within 40 mm using the general construction measures in Beijing subway running tunnel construction, and furthermore, the settlement of 40mm will not damage the existing nearby structures and utilities including neighboring buildings, bridges and pipelines, etc. So the control valve of 40 mm is rational, which can be adopted as the control standard of ground surface settlement induced by running tunnel construction in Beijing subway.


2014 ◽  
Vol 1065-1069 ◽  
pp. 414-420
Author(s):  
Xiong Fei Yang ◽  
Hong Yuan ◽  
Jia Yu Wu ◽  
Hou Mei Zhang

Based on the peck formula, this paper has analyzed measured data of ground surface subsidence, and get the regression curve of ground surface subsidence. Expression for degree of reliability of the maximum ground surface settlement is derived analytically by using central-point method. On the basis of a certain section of tunnel of Guangzhou subway constructed by mining excavation method, linear regression method can be effectively fitting the ground surface deformation data due to tunnel excavation. The central-point method provides a new way for reliability analysis of the ground surface settlement of shield construction.


2012 ◽  
Vol 256-259 ◽  
pp. 1447-1452
Author(s):  
Ying Chun Fu

It is the key to success or failure of the construction that we control the ground surface settlement, vault sink and supporting force by the choice of the reasonable construction method in the subway construction process. Based on the project profiles of the tunnel in Nanjing orbit traffic line 1 from South Yan'an road to NingDan road, the article mainly carries on the numerical simulation to construction program by using ANSYS finite element software according to the joint arch tunnel construction of the double and triple arch in the entry end .The article mainly has an analysis from the ground surface settlement, the strata, axial force of supporting structure, bending moment and other aspects. The results show that the program is feasible. The article provids guidance to the future construction of similar projects .


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Changsheng Wu ◽  
Zhiduo Zhu

The tail void grouting is a key step in shield tunnel construction and has an important influence on the loading on the surrounding soil and on the resulting settlement. In order to estimate the ground surface settlement caused by tail void grouting pressure in tunnel construction, the loading on the surrounding soil is simplified as an expansion problem of the cylindrical cavity in semi-infinite elastic space. A simple analytical formula is deduced by using the virtual image technique and Fourier transform solutions. The effectiveness of the proposed method is verified by case studies. The effects of elastic modulus, tail void grouting pressure, tunnel radius, and tunnel depth on the ground surface heave are conducted. The results indicate that the computed results are in accordance with Ye’s solution and it is more rational to consider the ground surface heave induced by tail void grouting pressure in the prediction of ground settlement due to shield excavation. Moreover, the ground surface heave owing to tail void grouting pressure resembled a Gaussian distributed curve. Thus, no matter the ground surface subsidence or ground surface heave can be predicted by means of adding the presented empirical formula to the Peck formula which cannot predict the ground surface heave. The ground surface heave decreases with an increase in elastic modulus. On the contrary, as the tail void grouting pressure and tunnel radius increase, the ground surface heave increases, respectively. The ground surface heave first steadily increases and then declines gradually with the tunnel depth increase.


Author(s):  
Y. Zhu ◽  
S. Zhou ◽  
D. Zang ◽  
T. Lu

This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.


2012 ◽  
Vol 170-173 ◽  
pp. 1801-1809
Author(s):  
Lin Qing Huang ◽  
Tong Qing Wu ◽  
Zhi Gang Qi

This is an important technical problem that subway tunnel excavation pass through a filled area of crushed rock soil in mountainous city,and to control the ground surface settlement and reduce the influence for existing building have great significance. The paper presents an example that tunnel excavation pass through complex geological area of metro line no.3 project in Chongqing.At first,according to the monitoring results,the big surface subsidence and structures cracking appear in the process of the tunnel excavation are discussed.And then,use the finite element method analysis and calculation. On the basis of the analysis and calculation results, many effective technical measures are proposed to ensure stability of surrounding rock and control the ground surf ace settlement. Such as small catheter grouting consolidation, CD construction method, excavation speed control and so on. The monitoring results show that the vault sinks and convergence value reduce significantly after the improved technology measures are used.At same time,the ground surface settlement is controlled effec- tively. The results show that the improved construction measures achieve the purpose to control the settlement and deformation. The study result of construction scheme can provide reference for the similar project.


Sign in / Sign up

Export Citation Format

Share Document