scholarly journals Effect of temperature on the shear strength of soils and the soil–structure interface

2016 ◽  
Vol 53 (7) ◽  
pp. 1186-1194 ◽  
Author(s):  
Neda Yavari ◽  
Anh Minh Tang ◽  
Jean-Michel Pereira ◽  
Ghazi Hassen

In the present work, the shear behaviour of soils and the soil–concrete interface is investigated through direct shear tests at various temperatures. A conventional direct shear apparatus, equipped with a temperature control system, was used to test sand, clay, and the clay–concrete interface at various temperatures (5, 20, and 40 °C). These values correspond to the range of temperatures observed near thermoactive geostructures. Tests were performed at normal stress values ranging from 5 to 80 kPa. Results show that the effect of temperature on the shear strength parameters of soils and the soil–concrete interface is negligible. A softening behaviour was observed during shearing of the clay–concrete interface, which was not the case with clay specimens. The peak strength of the clay–concrete interface is smaller than the ultimate shear strength of clay.

1988 ◽  
Vol 25 (3) ◽  
pp. 500-510 ◽  
Author(s):  
J. K. M. Gan ◽  
D. G. Fredlund ◽  
H. Rahardjo

Multistage direct shear tests have been performed on saturated and unsaturated specimens of a compacted glacial till. A conventional direct shear apparatus was modified in order to use the axis-translation technique for direct shear tests on unsaturated soils. The soil can be subjected to a wide range of matric suctions. The testing procedure and some typical results are presented. Nonlinearity in the failure envelope with respect to matric suction was observed. Suggestions are made as to how best to handle the nonlinearity from a practical engineering standpoint. Key words: shear strength, unsaturated soils, negative pore-water pressures, soil suction, direct shear.


2021 ◽  
Vol 13 (14) ◽  
pp. 7758
Author(s):  
Biao Qian ◽  
Wenjie Yu ◽  
Beifeng Lv ◽  
Haibo Kang ◽  
Longxin Shu ◽  
...  

To observe the effect of recycled sand and nano-clay on the improvement of the early strength of soil-cement (7d), 0%, 10%, 15% and 20% recycled sand were added. While maintaining a fixed moisture content of 30%, the ratios of each material are specified in terms of soil mass percentage. The shear strength of CSR (recycled sand blended soil-cement) was investigated by direct shear test and four groups of specimens (CSR-1, CSR-2, CSR-3 and CSR-4) were obtained. In addition, 8% nano-clay was added to four CSR groups to obtain the four groups of CSRN-1, CSRN-2, CSRN-3 and CSRN-4 (soil-cement mixed with recycled sand and nano-clay), which were also subjected to direct shear tests. A detailed analysis of the modification mechanism of soil-cement by recycled sand and nano-clay was carried out in combination with scanning electron microscopy (SEM) and IPP (ImagePro-Plus) software. The test results showed that: (1) CSR-3 has the highest shear strength due to the “concrete-like” effect of the incorporation of recycled sand. With the addition of 8% nano-clay, the overall shear strength of the cement was improved, with CSRN-2 having the best shear strength, thanks to the filling effect of the nano-clay and its high volcanic ash content. (2) When recycled sand and nano-clay were added to soil-cement, the improvement in shear strength was manifested in a more reasonable macroscopic internal structure distribution of soil-cement. (3) SEM test results showed that the shear strength was negatively correlated with the void ratio of its microstructure. The smaller the void ratio, the greater the shear strength. This shows that the use of reclaimed sand can improve the sustainable development of the environment, and at the same time, the new material of nano-clay has potential application value.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 512
Author(s):  
Zhi Cheng ◽  
Xinrong Cheng ◽  
Yuchao Xie ◽  
Zhe Ma ◽  
Yuhao Liu

Desulfurization ash and fly ash are solid wastes discharged from boilers of power plants. Their utilization rate is low, especially desulfurization ash, most of which is stored. In order to realize their resource utilization, they are used to modify loess in this paper. Nine group compaction tests and 32 group direct shear tests are done in order to explore the influence law of desulfurization ash and fly ash on the strength of the loess. Meanwhile, FLAC3D software is used to numerically simulate the direct shear test, and the simulation results and the test results are compared and analyzed. The results show that, with the increase of desulfurization ash’s amount, the shear strength of the modified loess increases first and then decreases. The loess modified by the fly ash has the same law with that of the desulfurization ash. The best mass ratio of modified loess is 80:20. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 12.74% higher than that of the pure loess on average and the shear strength of loess modified by fly ash is 3.59% higher than that of the pure loess on average. The effect of the desulfurization ash on modifying the loess is better than that of the fly ash. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 9.15% higher than that of the fly ash on average. Comparing the results of the simulation calculation with the actual test results, the increase rate of the shear stress of the FLAC3D simulation is larger than that of the actual test, and the simulated shear strength is about 8.21% higher than the test shear strength.


2019 ◽  
Vol 9 (23) ◽  
pp. 5206 ◽  
Author(s):  
Wen-Chieh Cheng ◽  
Zhong-Fei Xue ◽  
Lin Wang ◽  
Jian Xu

Loess and PHW (post-harvest waste) are easily accessible in the Chinese Loess Plateau and have been widely applied to construction of residential houses that have been inhabited for decades under the effect of freeze-thaw cycles. Although many researchers have recognised that the addition of fibers to loess soil is effective in preventing soil erosion and stabilising slopes, a consensus on this claim has not been reached yet. This study investigates the shearing behaviour of the loess-PHW mixture using small-scale and large-scale direct shear (SSDS and LSDS) tests. Four typical shear stress versus horizontal displacement curves from the multiscale direct shear tests are recognised where one is featured with strain-softening shape and the other three with a strain-hardening shape. Two out of the three curves with strain-hardening shape show a gradual increase in the shear stress at additional and larger displacements, respectively, in which some factor starts to have an influence on the shearing behaviour. Comparisons of the shear strength measured in SSDS and LSDS are made, indicating that there are differences between SSDS and LSDS. The effect of PHW addition on shear strength is assessed in order to determine the optimal dosage. The improvement of shear strength is attributed to the effect of particle inter-locking, resulting from the addition of PHW to loess specimens, and takes effect as the water content surpassed a threshold, i.e., >14%, that facilitates particle rearrangement. Particle-box interaction behaviour is assessed at the same time, and the findings satisfactorily address the main cause of the gradual increase in shear stress following the curve inflection point. The improved shearing behaviour proves the ability of the loess-PHW mixture to resist the seepage force and consequently stratum erosion.


2020 ◽  
Vol 45 (5) ◽  
pp. 4343-4357
Author(s):  
Zhong-Liang Zhang ◽  
Zhen-Dong Cui ◽  
Ling-Zi Zhao

2009 ◽  
Vol 46 (5) ◽  
pp. 595-606 ◽  
Author(s):  
Tariq B. Hamid ◽  
Gerald A. Miller

Unsaturated soil interfaces exist where unsaturated soil is in contact with structures such as foundations, retaining walls, and buried pipes. The unsaturated soil interface can be defined as a layer of unsaturated soil through which stresses are transferred from soil to structure and vice versa. In this paper, the shearing behavior of unsaturated soil interfaces is examined using results of interface direct shear tests conducted on a low-plasticity fine-grained soil. A conventional direct shear test device was modified to conduct direct shear interface tests using matric suction control. Further, the results were used to define failure envelopes for unsaturated soil interfaces having smooth and rough counterfaces. Results of this study indicate that matric suction contributes to the peak shear strength of unsaturated interfaces; however, postpeak shear strength did not appear to vary with changes in matric suction. Variations in net normal stress affected both peak and postpeak shear strength. Failure envelopes developed using the soil-water characteristic curve (SWCC) appeared to capture the nonlinear influence of matric suction on shear strength of soil and interfaces.


Sign in / Sign up

Export Citation Format

Share Document