Influences of initial anisotropy and principal stress rotation on the undrained monotonic behavior of a loose silica sand

Author(s):  
Kazem Fakharian ◽  
Farzad Kaviani-Hamedani ◽  
S M Reza Imam

Triaxial compression and extension tests have been conducted under different initial anisotropy conditions to investigate the undrained response of a crushed silica sand. The loose to medium specimens were prepared using the moist tamping method. Five stress paths with different stress ratios (q/p^') were employed to prepare anisotropically consolidated specimens. Several specimens were consolidated under a specific condition in which a stress rotation occurred under undrained monotonic shearing similar to a reversed cyclic shear stress loading during an earthquake. The effects of initial induced anisotropy at consolidation on the onset of liquefaction, phase transformation, and critical state are investigated within the framework of Anisotropic Critical State Soil Mechanics (ACSSM). In addition, fabric evolution during shearing towards the critical state is evaluated using bidirectional bender element tests. The results illustrate the fact that there is a unique anisotropic critical state representing anisotropic fabric, irrespective of initial anisotropy, and the states of stress. Similar to the critical state line, the phase transformation line has the same loci for different initial anisotropies.

2020 ◽  
Vol 857 ◽  
pp. 417-430
Author(s):  
Kazem Fakharian ◽  
Farzad Kaviani Hamedani

It is widely accepted that soil behavior is complicated taking into account soil anisotropy owing to the fact that this phenomenon arises from oriented soil fabric or structure forged in the deposition stage. In this study, a review of major findings of authors’ previous studies are presented with the main focus on soil anisotropy using extensive experimental results incuding Triaxial (TXT), Simple Shear (SSA), and Hollow Cylinder (HCA) apparatus. Effects of initial anisotropy, fabric evolution, stress path, principal stress rotation and intermediate stress state are evaluated for a crushed silica sand. In addition, the effects of Portland cement content and granulated rubber contents on anisotropic behavior of the sand are investigated. Bender elments are mounted on triaxial specimens both in vertical and horizontal directions to measure the shear wave velocity and hence maximum shear modulus at the end of consolidation as well as during shearing up to large strains at critical state condition, as an index of evaluating the fabric evolution. The effects of principal stress rotation and stress paths reveals the crucial role of soil anisotropy on the behavior of clean sand. However, adding either cement or granulated rubber to the sand has considerably decreased anisotropy.


Author(s):  
Jorge Macedo ◽  
Luis Vergaray

Static liquefaction has been associated with numerous recent failures of tailings storage facilities (TSFs) around the world (e.g., the 2019 Brumadinho failure). These failures lead to devastating consequences for the environment and civil infrastructure, as well as the loss of human lives. In this study, we present trends for the mechanical response of mine tailings considering a) triaxial tests, b) bender element tests, and c) consolidation tests on 53 mine tailings materials (including recent case histories). These materials have a broad range of states, particle size distributions, and compressibility. The trends are evaluated in the context of static liquefaction using critical state soil mechanics concepts, focusing on the variation of the shear strength (residual and peak), state and brittleness soil indexes, excess pore pressure indexes, instability stress ratios, and dilatancy. In particular, we highlight that mine tailings mechanical properties reflect both the properties of the particles themselves and the relative proportions of different particle sizes. For instance, the observed trends suggest that particle gradation influences the small strain stiffness and dilatancy; the proportion of voids to the size of fine particles influences strength, and particle shape affects dilatancy. Finally, we propose static liquefaction screening indexes based on the observed trends.


1988 ◽  
Vol 25 (3) ◽  
pp. 428-439 ◽  
Author(s):  
J. H. Atkinson ◽  
J. A. Little

Undrained triaxial compression tests were carried out on reconstituted and nominally undisturbed tubed samples of a lodgement till from the Vale of St. Albans in Hertfordshire, England. The soil is a matrix-dominant, chalky boulder clay of Anglian age with little discernable engineering fabric. Electron microscope observations showed the presence of crystalline calcite in tube samples.The test results were examined within the general framework of critical state soil mechanics using normalizing procedures to take account of the different states and stress histories of the samples. These analyses demonstrate the practical importance of accounting for the current state and stress history in the interpretation of soil test data.The present results form a self-consistent pattern of behaviour. Differences between reconstituted and tubed samples were found only at small strain and may be attributed to cementing in tubed samples, which is broken down during reconstitution and during relatively large straining in recompression and shearing. Key words: boulder clay, cemented soil, critical state, shear strength, soil mechanics, stiffness, till, triaxial test.


1999 ◽  
Vol 36 (4) ◽  
pp. 599-611 ◽  
Author(s):  
Xiang-Song Li ◽  
Yannis F Dafalias ◽  
Zhi-Liang Wang

A bounding-surface hypoplasticity model is modified to incorporate the basic premises of critical-state soil mechanics and cover both dense and loose sand behavior. The modification consists of rendering the phase-transformation line a function of the state parameter, which measures the difference between the current and critical void ratios at the same value of p, such that when the state parameter is zero, the phase-transformation line becomes identical to the critical-state line in q-p space. As a result the dilatancy depends on the state in a way that yields a zero value at critical state. This dependence allows a realistic modelling of the response of a sand in either loose or dense state, or in the transition from one state to another state. A comparison between model simulations and a sequence of experimental results for drained, undrained, monotonic, and cyclic loading conditions shows that the proposed concept and modelling technique work effectively over a wide range of densities and confining pressures using a unique set of parameters (or parameter dependence) for a given sand.Key words: bounding surface, critical state, dilatancy, phase transformation, soil plasticity, state parameter.


Author(s):  
Jeremy Tan ◽  
Rolando P. Orense ◽  
Andy O’Sullivan

The majority of current procedures used to deduce liquefaction potential of soils rely on empirical methods. These methods have been proven to work in the past, but these methods are known to overestimate the liquefaction potential in certain regions of Christchurch due to a whole range of factors, and the theoretical basis behind these methods cannot be explained scientifically. Critical state soil mechanics theory was chosen to provide an explanation for the soil’s behaviour during the undrained shearing. Soils from two sites in Christchurch were characterised at regular intervals for the critical layers and tested for the critical state lines (CSL). Various models and relationships were then used to predict the CSL and compared with the actual CSL. However none of the methods used managed to predict the CSL accurately, and a separate Christchurch exclusive relationship was proposed. The resultant state parameter values could be obtained from shear-wave velocity plots and were then developed into cyclic resistance ratios (CRR). These were subsequently compared with cyclic stress ratios (CSR) from recent Christchurch earthquakes to obtain the factor of safety. This CSL-based approach was compared with other empirical methods and was shown to yield a favourable relationship with visual observations at the sites’ locations following the earthquake.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-113 ◽  
Author(s):  
J. A. Sladen ◽  
J. M. Oswell

Very loose sand is defined as sand whose state is significantly looser than its critical state. The detailed stress-strain behaviour of very loose sand in triaxial compression is described for the first time within the framework of critical state soil mechanics. It is shown that the undrained behaviour of very loose sand under static loading can be rationalized by normalization with respect to the critical state, an approach that has been successful when applied to clays and to sands dense of critical. Strain contours in normalized stress space are presented for several sands and are shown to be remarkably consistent. The observed normalized behaviour is used to develop a simple constitutive model for the behaviour of very loose sands, based on plasticity theory. It is demonstrated that this model can be used successfully to predict the essential features of the behaviour of very loose sands in undrained and drained triaxial compression including cyclic loading conditions. The model includes the strain softening that occurs in very loose sands in conditions of impeded drainage and the cumulative increase in pore pressure that occurs during undrained cyclic loading. It can be used to predict the onset of liquefaction, a phenomenon only exhibited by very loose sands and quick clays. Key words: sand, liquefaction, triaxial test, cyclic loading, steady state testing, collapse surface.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


2017 ◽  
Vol 54 (10) ◽  
pp. 1460-1471 ◽  
Author(s):  
Katherine A. Kwa ◽  
David W. Airey

This study uses a critical state soil mechanics perspective to understand the mechanics behind the liquefaction of metallic ores during transport by ship. These metallic ores are transported at relatively low densities and have variable gradings containing a wide range of particle sizes and fines contents. The effect of the fines content on the location of the critical state line (CSL) and the cyclic liquefaction behaviour of well-graded materials was investigated by performing saturated, standard drained and undrained monotonic and compression-only cyclic triaxial tests. Samples were prepared at four different gradings containing particle sizes from 9.5 mm to 2 μm with fines (<75 μm) contents of 18%, 28%, 40%, and 60%. In the e versus log[Formula: see text] plane, where e is void ratio and [Formula: see text] is mean effective stress, the CSLs shifted upwards approximately parallel to one another as the fines content was increased. Transitional soil behaviour was observed in samples containing 28%, 40%, and 60% fines. A sample’s cyclic resistance to liquefaction depended on a combination of its density and state parameter, which were both related to the fines content. Samples with the same densities were more resistant to cyclic failure if they contained higher fines contents. The state parameter provided a useful prediction for general behavioural trends of all fines contents studied.


Sign in / Sign up

Export Citation Format

Share Document