scholarly journals Effects of fenugreek (Trigonella foenum-graecum L.) seed extract supplementation in different energy density diets on growth performance, nutrient digestibility, blood characteristics, fecal microbiota, and fecal gas emission in growing pigs

2018 ◽  
Vol 98 (2) ◽  
pp. 289-298 ◽  
Author(s):  
M.M. Hossain ◽  
M. Begum ◽  
I.H. Kim

This study evaluated the efficacy of fenugreek seed extract (FSE) in growing pigs. About 140 growing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 23.70 ± 2.80 kg were used in a 6 wk trial. Treatments were (on as-fed basis) two levels of FSE (FSE0, 0 or FSE0.2, 2 g kg−1 basal diet), and two levels of energy [low-energy diet (LED); 3160 or high-energy diet (HED); 3260 kcal kg−1 metabolizable energy (ME)]. Pigs in HED and FSE0.2 diets had higher final BW, average daily gain, and gain:feed ratio (G:F) compared with in LED, and FSE0 diets, respectively (P < 0.05). Pigs fed the FSE0.2 and HED diets had higher energy (E) digestibility than the FSE0 and LED diets, respectively (P < 0.05). Pigs fed the FSE0.2 diet increased serum immunoglobulin G (IgG), and reduced total cholesterol (TC) concentration than the FSE0 diet (P < 0.05). Hydrogen sulfide (H2S) and ammonia (NH3) gas emission in FSE0.2 diet were lower than that in FSE0 group (P < 0.05). In conclusion, results indicated that dietary supplementation of FSE improved growth performance, digestibility, serum IgG, reduced serum TC, and noxious gas emission in growing pigs.

Author(s):  
De Xin Dang ◽  
In Ho Kim

The purpose of this study was to evaluate the effects of dietary supplementation of Quillaja saponin (QS) on growth performance, nutrient digestibility, fecal microbiota, and fecal gas emission in growing pigs. A total of 50 crossbred growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight of 23.83 ± 1.95 kg were randomly assigned to 1 of 2 treatments for a 56-day trial with 5 replicate pens per treatment and 5 pigs (2 barrows and 3 gilts) per pen. Dietary treatments including control diet and control diet supplemented with 200 mg/kg QS. The average daily gain was significantly increased during days 0-56, while the fecal ammonia emission on day 56 and fecal coliform bacteria counts on day 28 were significantly decreased in pigs fed with QS containing diet. However, dietary supplementation of QS had no significant effects on apparent total tract digestibility. In conclusion, dietary supplementation of 200 mg/kg QS had beneficial effects on growth performance, fecal microbiota, and fecal gas emission in growing pigs. Considering the carry-over effects, the adaption period should be at least 28 days when supplementing 200 mg/kg QS to the diet of growing pigs for improving the growth performance.


2020 ◽  
Vol 100 (1) ◽  
pp. 133-139
Author(s):  
Xiang Ao ◽  
Yan Lei ◽  
In Ho Kim

This study was conducted to evaluate the effect of supplementation of different flavors (apple and anise) on growth performance, nutrient digestibility, blood profiles, and carcass quality in growing–finishing pigs. A total of 96 growing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 28.2 ± 0.7 kg were randomly assigned to one of the following three treatments: (1) CON, basal diet; (2) APF, basal diet + 0.05% apple flavor; (3) ANF, basal diet + 0.05% anise flavor, according to their BW and sex in this 15 wk experiment. There were eight replications (pens) per treatment and four pigs per pen (two barrows and two gilts). During week 0–5, pigs fed ANF diets had greater (p < 0.05) average daily gain (ADG) and average daily feed intake than those fed CON and APF diets. Dietary ANF treatment increased (p < 0.05) ADG during 0–15 wk compared with CON treatment. At the end of 5 wk, the apparent total tract digestibility of nitrogen in ANF treatment was improved (p < 0.05) compared with that in CON treatment. Dietary treatments did not affect the studied traits of carcass and meat quality. The inclusion of anise flavor increased ADG, but apple flavor had no effect on growth performance in growing–finishing pigs.


2019 ◽  
Vol 99 (4) ◽  
pp. 840-847
Author(s):  
X. Liu ◽  
Y.S. Han ◽  
I.H. Kim

The present experiment was to evaluate the effects of dietary Spirulina (SP) supplementation in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc, 25.32 ± 1.36 kg] were randomly distributed to one of four treatments: control, basal diet; treatment 1, basal diet + 0.025% SP; treatment 2, basal diet + 0.050% SP; and treatment 3, basal diet + 0.100% SP. Growing pigs fed 0.050% SP diet had greater (P < 0.05) body weight and fecal Lactobacillus counts compared with pigs fed basal diet. Average daily gain and gain to feed ratio were greater (P < 0.05) in pigs fed 0.050% and 0.100% SP diets as compared with pigs fed basal diet. The apparent total tract digestibility (ATTD) of dry matter (DM) and superoxide dismutase (SOD) activity for pigs fed 0.050% SP diet tended to increase compared with pigs fed basal diet (P < 0.10). Pigs fed 0.025%, 0.050%, and 0.100% SP had a higher (P < 0.05) glutathione peroxidase (GPx) activity than pigs fed basal diet. In conclusion, SP supplementation improved growth performance and ATTD of DM, increased the SOD and GPx activity, and enhanced the fecal Lactobacillus counts in growing pigs.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 386 ◽  
Author(s):  
Balamuralikrishnan Balasubramanian ◽  
Jae Hong Park ◽  
Sureshkumar Shanmugam ◽  
In Ho Kim

The study was aimed to evaluate the effects of dietary inclusion of an enzyme blend on growth performance, apparent total track digestibility (ATTD) of dry matter (DM), nitrogen (N), gross energy (GE), fecal microbial population, noxious gas emissions and meat quality of pigs fed corn–soybean meal-based diets for a 16-week feeding trial. A total of 180 growing pigs (body weight of 23.3 ± 2.51 kg) were used and randomly allotted to one of three dietary treatments (positive control (PC, basal diet); negative control (NC, −150 kcal/kg of PC); A1 (NC + 1% enzyme blend)). Overall, dietary inclusion of the enzyme blend increased (p < 0.05) body weight, average daily gain and gain:feed ratio without effecting average daily feed intake. An increase was observed in ATTD of DM (p = 0.027) and GE (p = 0.026) at week 16 and 6, respectively. Dietary inclusion of the enzyme blend increased the beneficial effects on fecal microbiota counts such as Lactobacillus with a reduced presence of E. coli during the entire experiment (p < 0.05). Further, positive effects (p < 0.05) were observed on back-fat thickness and carcass weight of pigs, along with the results of reduced levels of NH3 emissions (p = 0.032) at week 16. Thus, the study suggested that the dietary enzyme blend supplement had improving effects on growth performance, ATTD of nutrients, fecal microbial counts and meat quality in pigs.


2018 ◽  
Vol 98 (2) ◽  
pp. 325-332 ◽  
Author(s):  
J.W. Park ◽  
I.H. Kim

This study evaluated the efficacy of fermented corn (FC) in growing pigs. One hundred twenty-eight growing pigs [(Landrace × Yorkshire) × Duroc)] with an initial body weight of 29.59 ± 1.34 kg were used in a 6 wk experiment. Pigs were assigned into one of four dietary treatments in a 2 × 2 factorial arrangement with two levels of nutrient density (high energy: 3.37 Mcal kg−1, or low energy: 3.29 Mcal kg−1) and FC (0% or 20% substitute for corn). Pigs fed diets with FC increased (P < 0.05) average daily gain (ADG) overall. Pigs fed with high-density (HD) diets increased (P < 0.05) ADG and gain to feed (G/F) ratio overall. Apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and nitrogen (N) increased (P < 0.05) in pigs fed with FC diets compared with pigs fed the diets without FC. In addition, pigs fed with HD diets increased (P < 0.05) ATTD of DM and GE compared with low-density (LD) diets. Furthermore, pigs fed with HD diets had a higher (P < 0.05) ATTD of DM and GE than those fed with LD diets. Both LD and FC supplementation led to lower (P < 0.05) fecal gas emission content. Pigs fed FC diets increased ileal Lactobacillus concentration and decreased Escherichia coli concentration. An interactive effect between nutrient density diet and FC was observed on the G/F, Lactobacillus on ileal microorganisms, and nutrient digestibility. In conclusion, the results indicated that dietary supplementation of HD diets and FC improved performance in growing pigs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 193-195
Author(s):  
Vetriselvi Sampath ◽  
Hyun Ju Park ◽  
Yong min Kim ◽  
Je Min Ahn ◽  
Inho Kim

Abstract BACKGROUND: A total of one hundred and forty, 28 d-old weaner pigs [Duroc x (Yorkshire x Landrace)] with initial body weight (BW) of 6.56±1.25kg were used in a six-week treatment (7 replicate pens per treatment; barrows, and 2 gilts/pen) to evaluate the effect of low nutrient density diet supplement with probiotic mixture supplementation on the growth performance, nutrient digestibility, fecal microbial, and gas emission of weaner pigs. RESULTS: Pigs fed low-density diet with probiotic mixture supplementation had linearly increased (P = 0.028, 0.014) the body weight (BW) at weeks 3, and 6. Moreover, average daily gain (ADG) was linearly improved (P=0.018, 0.014, 0.014) at week 3, 6, and overall experiment. However, there were no interactive effects found on the nutrient digestibility of dry matter (DM), nitrogen (N) and energy (E) throughout the experiment. Dietary inclusion of low-density diet with probiotic mixture supplementation has improved the fecal lactobacillus counts linearly, but E. coli was unaffected during the trail. On day 42, Ammonium gas emission was significantly decrease in pigs fed a low-density diet with probiotic mixture supplementation. However, H2S, acetic acid, and CO2 were not significantly affected by the probiotic mixture supplementation diet. CONCLUSION: Low-density diet with probiotic mixture supplementation had positively affected the growth performance, fecal microbial, and fecal gas emission on weaner pigs.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2232
Author(s):  
Huan Wang ◽  
In-ho Kim

A total of 180, 4-week-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.67 ± 1.40 kg) were used in a 42 day experiment to evaluate the effect of dietary probiotics (Lactobacillus plantarum BG0001) on growth performance, nutrient digestibility, blood profile, fecal microbiota, and noxious gas emission. All pigs were randomly allotted to one of four treatment diets in a completely randomized block design. Each treatment had nine replicates with five pigs/pen (mixed sex) Designated dietary treatments were as: (1) basal diet (NC), (2) NC + 0.2% antibiotics (chlortetracycline) (PC), (3) NC + 0.1% L. plantarum BG0001 (Lactobacillus plantarum BG0001) (NC1), (4) NC + 0.2% L. plantarum BG0001 (NC2). On d 42, BW and G:F were lower (p < 0.05) in pigs fed NC diet compared with PC diet and probiotic diets. Throughout this experiment, the average daily gain increased (p < 0.05) in pigs when fed with PC and probiotic diets than the NC diet. The average daily feed intake was higher (p < 0.05) in pigs fed PC diet during day 0–7 and 22–42, and probiotic diets during day 0–7 compared with NC diet, respectively. The Lactobacillus count was increased and Escherichia coli count was decreased (p < 0.05) in the fecal microbiota of pigs fed probiotic diets, and E. coli were decreased (p < 0.05) when fed a PC diet compared with the NC diet on day 21. Moreover, the apparent total tract nutrient digestibility, blood profile, and the concentration of noxious gas emission had no negative effects by the probiotic treatments. In conclusion, dietary supplementation with L. plantarum BG0001 significantly improved the growth performance, increased fecal Lactobacillus, and decreased E. coli counts in weaning pigs.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Sheena Kim ◽  
Jin Ho Cho ◽  
Younghoon Kim ◽  
Hyeun Bum Kim ◽  
Minho Song

The present study was conducted to evaluate the effects of replacing corn with brown rice on growth performance, nutrient digestibility, carcass characteristics, and gut microbiota of growing and finishing pigs. A total of 100 growing pigs (23.80 ± 2.96 kg BW; 10 weeks of age) were randomly allotted to 4 dietary treatments (5 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW) as follows: corn-soybean meal basal diet (CON) and replacing corn with 50% (GBR50), 75% (GBR75), and 100% (GBR100) of ground brown rice. Each trial phase was for 6 weeks. During the growing period, there were no differences on growth performance and nutrient digestibility among dietary treatments. Similarly, no differences were found on growth performance, nutrient digestibility, and carcass characteristics of pigs during the finishing period among dietary treatments. As a result of the beta diversity analysis, microbial populations were not clustered between CON and GBR100 during the growing phase, but clustered into two distinct groups of CON and GBR100 during the finishing phase. In conclusion, brown rice can be added to the diets of growing-finishing pigs by replacing corn up to 100% without negatively affecting growth performance of the pigs; additionally, this may have an effect on changes in pig intestinal microbiota if continued for a long time.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 403-405
Author(s):  
Koo Deokho ◽  
Dang De Xin ◽  
Gao Shanshui ◽  
Lim Chain Bin ◽  
Kim Inho

Abstract This study was carried out to assess the effects of dietary supplementation of enzymatic bio-conversion of Scuterallia baicalensis (SB) extract on the growth performance, nutrient digestibility, fecal microbiota, fecal gas emission, blood hematology, and antioxidative indicators in growing pigs. A total of 200 crossbred pigs [(Landrace × Yorkshire) × Duroc] with an initial body weight of 24.52 ± 1.99 kg were used in a 42-day experiment with a completely randomized block design. Pigs were randomly divided into 4 treatment groups with 10 replicate pens per treatment and 5 animals per pen (2 barrows and 3 gilts). There were four diet conditions: 1) CON, basal diet; 2) TRT1, basal diet + 0.1% apramycin; 3) TRT2, basal diet + 0.1% SB extract; 4) TRT3, basal diet + 0.1% enzymatic bio-conversion of SB extract. The pen was taken as the experimental unit. Tukey’s multiple range test was used for evaluation of differences among the treatments. Compared with the CON group, TRT1 or TRT3 groups had higher final body weight (BW) (P = 0.074) and average daily gain (ADG) (P = 0.075), and lower feed conversion ratio (FCR) (P = 0.054). The apparent total tract digestibility (ATTD) of dry matter (DM) (P = 0.095) in TRT1 group was higher than that in CON group. Serum glutathione peroxidase (GPX) (P = 0.047) and glutathione (GSH) (P = 0.074) concentrations in TRT3 group were higher than those in CON or TRT1 groups. However, there were no significant differences in fecal microbiota, fecal gas emission, and blood hematology among all dietary groups. A positive correlation between apramycin supplementation in the diet and ADG and the ATTD of DM were observed. A positive correlation between enzymatic bio-conversion of SB extract supplementation in the diet and ADG and the concentration of GPX and GSH in serum were also observed.


Sign in / Sign up

Export Citation Format

Share Document