Halonatospora gen. nov. with H. pansihalos comb. nov. and Glomus bareae sp. nov. (Glomeromycota; Glomeraceae)

Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 737-748 ◽  
Author(s):  
Janusz Błaszkowski ◽  
Piotr Niezgoda ◽  
Bruno T. Goto ◽  
Anna Kozłowska

We established single-species pot cultures of the former Glomus pansihalos, a member of the Glomeraceae, and obtained sequences of the SSU–ITS–LSU nrDNA segment and the RPB1 gene of the species. Phylogenetic analyses of the sequences indicated that G. pansihalos represents a separate clade at the rank of genus in the Glomeraceae. Consequently, the new genus was named Halonatospora, and G. pansihalos was renamed Halonatospora pansihalos comb. nov. We also grew an AMF that produced clusters with glomoid spores in single-species cultures and obtained SSU–ITS–LSU and RPB1 sequences of the fungus. Studies of pot cultures, morphological and histochemical characters of the spores, as well as phylogenetic analyses of the sequences proved that it is an undescribed species of the genus Glomus sensu stricto, which is associated with roots of Ammophila arenaria colonizing maritime sand dunes located in north-western Poland.

Phytotaxa ◽  
2018 ◽  
Vol 338 (3) ◽  
pp. 241 ◽  
Author(s):  
JANUSZ BŁASZKOWSKI ◽  
PRZEMYSŁAW RYSZKA ◽  
ANNA KOZŁOWSKA

An arbuscular mycorrhizal fungus (AMF) producing clusters with colourless, small (11‒35 µm diam when globose) spores of unique morphological characters of two spore wall layers was grown in a trap culture and in single-species cultures. Both the spore wall layers are permanent and have the same thickness. The features of the spores prompted that the fungus most probably belongs to one of the genera, Dominikia or Kamienskia. Phylogenetic analyses of sequences of the SSU‒ITS‒LSU nrDNA and the RPB1 gene showed that the discussed AMF is an undescribed Dominikia sp. highly diverged molecularly from the 12 so far described species of the genus. Consequently, the fungus is described here as D. litorea sp. nov. The sporulation of D. litorea in the trap culture indicated that in the field the new species lived in mycorrhizal symbiosis with Xanthium spinosum that had colonized sand dunes of the Mediterranean Sea located near Verico, Greece. However, comparisons of the SSU‒ITS‒LSU sequences of D. litorea with those obtained from molecular environmental studies, which are deposited in public databases, indicated that the new species probably is also associated with roots of an unnamed plant species growing in China. In addition, based on available literature, sequence data and personal observations, the so far known geographical distribution, habitats, and plant-hosts of the described Dominikia spp. were presented and discussed. Finally, the potential participation of Dominikia spp. in influencing plants and plant communities with which they are associated and ecosystems in which they exist were discussed.


Botany ◽  
2017 ◽  
Vol 95 (7) ◽  
pp. 629-639 ◽  
Author(s):  
Mohamed N. Al-Yahya’ei ◽  
Sangeeta Kutty Mullath ◽  
Laila A. AlDhaheri ◽  
Anna Kozłowska ◽  
Janusz Błaszkowski

The morphological, histochemical, and molecular properties of two new species of arbuscular mycorrhizal fungi (AMF; Glomeromycota) have been characterized. The first species is distinguished by spores that are orange to brownish orange, small, and formed only in clusters and mainly by having two laminate layers in a three-layered spore wall, with layer three staining dark in Melzer’s reagent. Despite the morphological similarity to some Septoglomus spp., phylogenetic analyses of sequences of the SSU–ITS–LSU nrDNA region and the RPB1 gene accommodated the fungus in the genus Dominikia, hence it was named Dominika emiratia. Intact spores of the second species, named Rhizoglomus dunense, closely resemble colourless isolates of R. clarum, but their spore wall layer three never becomes coloured with age, as does that in most R. clarum spores, and most importantly, the two fungi are separated by a large molecular distance. Dominikia emiratia was originally extracted from the rhizosphere of three plant species cultivated in two fields in a sandy desert in the Emirate of Abu Dhabi of the United Arab Emirates. Rhizoglomus dunense was found in a trap culture inoculated with the rhizosphere soil and root fragments of Ammophila arenaria, which had colonized sand dunes of the Mediterranean Sea, located near Thessalonica, Greece.


Botany ◽  
2016 ◽  
Vol 94 (10) ◽  
pp. 917-939 ◽  
Author(s):  
Amanda M. Savoie ◽  
Gary W. Saunders

Sequence data (COI-5P and rbcL) for North American members of the tribe Pterosiphonieae were compared with collections from around the world. Phylogenetic analyses resolved Pterosiphonia as polyphyletic and many species required transfer to other genera. In our analyses Pterosiphonia sensu stricto included only the type species P. cloiophylla (C. Agardh) Falkenberg and P. complanata (Clemente) Falkenberg, as well as the South African species P. stegengae sp. nov. A new genus, Xiphosiphonia gen. nov., was described for X. ardreana (Maggs & Hommersand) comb. nov., X. pennata (C. Agardh) comb. nov., and X. pinnulata (Kützing) comb. nov. Some Asian, European and North American species previously attributed to Pterosiphonia were transferred to Symphyocladia including S. baileyi (Harvey) comb. nov., S. dendroidea (Montagne) comb. nov., S. plumosa nom. nov. (for P. gracilis Kylin), and S. tanakae (S. Uwai & M. Masuda) comb. nov. We also described two new North American species, Symphyocladia brevicaulis sp. nov. and S. rosea sp. nov. Other species formed a well-supported clade for which the genus name Polyostea Ruprecht was resurrected. Included in Polyostea were P. arctica (J. Agardh) comb. nov., P. bipinnata (Postels & Ruprecht) Ruprecht, P. hamata (E.S. Sinova) comb. nov., and P. robusta (N.L. Gardner) comb. nov.


MycoKeys ◽  
2021 ◽  
Vol 80 ◽  
pp. 115-131
Author(s):  
Tolgor Bau ◽  
Jun-Qing Yan

Based on traditional morphological and phylogenetic analyses (ITS, LSU, tef-1α and β-tub) of psathyrelloid specimens collected from China, four new species are here described: Heteropsathyrella macrocystidia, Psathyrella amygdalinospora, P. piluliformoides, and P. truncatisporoides. H. macrocystidia forms a distinct lineage and groups together with Cystoagaricus, Kauffmania, and Typhrasa in the /Psathyrella s.l. clade, based on the Maximum Likelihood and Bayesian analyses. Thus, the monospecific genus Heteropsathyrella gen. nov. is introduced for the single species. Detailed descriptions, colour photos, and illustrations are presented in this paper.


2019 ◽  
Vol 188 (3) ◽  
pp. 663-680 ◽  
Author(s):  
Nadja Møbjerg ◽  
Aslak Jørgensen ◽  
Reinhardt M Kristensen

Abstract Marine tidal heterotardigrades (Echiniscoididae) have gained increasing interest owing to their unique adaptations and evolutionary position, bridging marine and limnoterrestrial taxa. Echiniscoididae was established to accommodate the marine genera Anisonyches and Echiniscoides. However, it has become apparent that Anisonyches, with its claw configuration, median cirrus and seminal receptacles, clearly has little or no affinity to tidal echiniscoidids with supernumerary claws. Consequently, we establish Anisonychidae fam. nov. to accommodate Anisonyches in a paraphyletic Arthrotardigrada and discuss its affinity to other heterotardigrade taxa. We recently split Echiniscoides into Isoechiniscoides and Echiniscoides s.l. The latter remains a miscellany of species complexes and undescribed genera, and it has become evident that a larger number of echiniscoidids belonging to Echiniscoides, Isoechiniscoides and undescribed genera coexist in intertidal sediments. Here, we erect Neoechiniscoides aski gen. nov., sp. nov. from Roscoff, France, which has a unique anal system, characterized by prominent lateral lobes with a set of wing-like structures. Phylogenetic analyses based on COI sequences infer a close relationship between N. aski, an undescribed species from Roscoff and unidentified species from Maine, USA. We propose that the new genus includes the former Echiniscoides species Echiniscoides pollocki and Echiniscoides horningi, which we hereby transfer.


Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 260-271 ◽  
Author(s):  
Janusz Błaszkowski ◽  
Przemysław Ryszka ◽  
Fritz Oehl ◽  
Sally Koegel ◽  
Andres Wiemken ◽  
...  

Two new arbuscular mycorrhizal fungal species, Glomus achrum sp. nov. and Glomus bistratum sp. nov. (Glomeromycota), are described and illustrated. Both species produce small, hyaline spores in aggregates formed in the soil and inside roots. Glomus achrum was associated with roots of Ammophila arenaria (L.) Link colonizing maritime dunes of the Vistula Bar in northern Poland, and G. bistratum occurred among vesicular-arbuscular mycorrhiza of Xanthium cf. spinosum growing in dunes of the Mediterranean Sea adjacent to Veriko, Greece. Spores of G. achrum are globose to subglobose, (25–)43(–55) µm in diameter, rarely egg-shaped, oblong to irregular, 15–45 µm × 55–65 µm. Their wall consists of three hyaline layers: a mucilaginous, short-lived outermost layer; a laminate middle layer composed of loose sublayers; and a flexible innermost layer. The outermost and the innermost layers stain deeply red in Melzer’s reagent. Spores of G. bistratum are globose to subglobose, (20–)29(–50) µm in diameter, and have a wall composed of two permanent, hyaline layers. The outer layer is unit, smooth, and the inner one laminate. Only the inner layer stains yellow in Melzer’s reagent. Both species formed vesicular-arbuscular mycorrhiza in single-species cultures with Plantago lanceolata  L. as the host plant. Phylogenetic analyses of partial 18S rDNA subunit and internal transcribed spacer (ITS) region sequences placed G. achrum and G. bistratum into Glomus group A, but did not reveal any closely related described species. Environmental sequences from the public databases suggested that G. achrum occurred in at least two other plant species from geographically distant regions. No such evidence could be obtained for G. bistratum, which is currently known only from the type location.


2007 ◽  
Vol 57 (10) ◽  
pp. 2370-2375 ◽  
Author(s):  
Jarone Pinhassi ◽  
María J. Pujalte ◽  
M. Carmen Macián ◽  
Itziar Lekunberri ◽  
José M. González ◽  
...  

A novel heterotrophic, moderately halophilic, strictly aerobic, motile bacterium was isolated from a seawater sample collected at the Blanes Bay Microbial Observatory in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to the single-species genera Reinekea and Saccharospirillum (95 and 94 % sequence similarity, respectively) within the class Gammaproteobacteria. The data from phenotypic, genotypic, chemotaxonomic and phylogenetic analyses supported the creation of a novel species of the genus Reinekea to accommodate this bacterium, for which the name Reinekea blandensis sp. nov. is proposed. The type strain is MED297T (=CECT 7120T =CCUG 52066T).


ZooKeys ◽  
2018 ◽  
Vol 790 ◽  
pp. 1-19 ◽  
Author(s):  
Yee Wah Lau ◽  
Frank Robert Stokvis ◽  
Leendert Pieter van Ofwegen ◽  
James Davis Reimer

A new genus and two new species of stoloniferous octocorals (Alcyonacea) within the family Arulidae are described based on specimens collected from Okinawa (Japan), Palau and Dongsha Atoll (Taiwan).Hanagen. n. is erected within Arulidae.Hanahanagasasp. n.is characterised by large spindle-like table-radiates andHanahanatabasp. n.is characterised by having ornamented rods. The distinction of these new taxa is also supported by molecular phylogenetic analyses. The support values resulting from maximum likelihood and Bayesian inference analyses for the genusHanaand new speciesH.hanagasaandH.hanatabaare 82/1.0, 97/1.0 and 61/0.98, respectively.Hanahanagasasp. n.andHanahanatabasp. n.are the first arulid records for Okinawa, Palau, and Dongsha Atoll, and represent species of the second genus within the family Arulidae.


2013 ◽  
Vol 48 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Janusz Błaszkowski ◽  
Gerard Chwat

An updated morphology of spores of <em>Septoglomus deserticola</em>, an arbuscular mycorrhizal fungus of the phylum Glomeromycota, is presented based on the original description of the species, only one other its definition recently published and spores produced in pot cultures inoculated with the rhizosphere soil and root fragments of an unrecognized grass colonizing maritime sand dunes of the Hicacos Peninsula, Cuba. Phylogenetic analyses of sequences of the large subunit (LSU) nrDNA region of the Cuban fungus confirmed its affinity with <em>S. deserticola </em>deposited in the International Bank for the Glomeromycota (BEG) and indicated that its closest relatives are <em>S. fuscum </em>and <em>S. xanthium</em>. Phylogenetic analyses of sequences of the small subunit (SSU) nrDNA confirmed the Cuban fungus x <em>S. fuscum </em>x <em>S. xanthium </em>relationship revealed in analyses of the LSU sequences and thereby suggested the Cuban <em>Septoglomus </em>is <em>S. deserticola</em>. However, it was impossible to prove directly the identity of the Cuban fungus and <em>S. deserticola </em>from BEG based on SSU sequences due to the lack of <em>S. deserticola </em>SSU sequences in public databases. In addition, phylogenetic analyses of LSU and SSU sequences confirmed the uniqueness of the recently erected genus <em>Corymbiglomus </em>with the type species <em>C. corymbiforme </em>(formerly <em>Glomus corymbiforme</em>) in the family Diversisporaceae and proved that its LSU sequences group in a clade with LSU sequences of <em>G. globiferum </em>and <em>G. tortuosum</em>. Consequently, the two latter species were transferred to <em>Corymbiglomus </em>and named <em>C. globiferum </em>comb. nov. and <em>C. tortuosum </em>comb. nov., and the definitions of the family Diversisporaceae and the genus <em>Diversispora </em>were emended.


Author(s):  
Bahareh Nowruzi ◽  
Fabiana Soares

In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S–23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus , but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola . The D1–D1′, Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).


Sign in / Sign up

Export Citation Format

Share Document