Molecular dynamics simulation of halogen bonding in Cl2, BrCl, and mixed Cl2/Br2 clathrate hydrates

2015 ◽  
Vol 93 (8) ◽  
pp. 864-873 ◽  
Author(s):  
Hana Dureckova ◽  
Tom K. Woo ◽  
Saman Alavi ◽  
John A. Ripmeester

Clathrate hydrate phases of dihalogen molecules have properties that differ from those of other guest molecules of similar size. The water oxygen–chlorine distances in the structure I (sI) Cl2 hydrate are smaller than the sum of the van der Waals radii of oxygen and chlorine. Bromine hydrate forms a unique clathrate hydrate structure that is not seen in other guest substances. In mixed Cl2/Br2 structure I hydrate, the water oxygen–bromine distances are also smaller than the sum of the oxygen and bromine van der Waals radii. We previously studied the structure of three dihalogen clathrate hydrates using single crystal X-ray diffraction and described these structural features in terms of halogen bonding between the dihalogen and water molecules. In this work, we perform molecular dynamics simulations of cubic sI Cl2, mixed Cl2/Br2, and BrCl clathrate hydrate phases. We perform quantum chemical computations on the dihalogen molecules to determine the nature of σ-hole near the halogen atoms. We fit the electrostatic potential of the molecules to point charge models including dummy atoms that represent σ-holes adjacent to the halogen molecules. Molecular dynamics simulations are used to determine the lattice constants, radial distribution functions, and guest dynamics in these phases. We determine the effect of guest size and difference in halogen bonding on the properties of the clathrate hydrate phase. Simulations for the Cl2, BrCl, and mixed Cl2/Br2 hydrates are performed with small cages of the sI clathrate hydrate phases completely full or filled with experimental occupancies with Cl2 guests.

2002 ◽  
Vol 13 (09) ◽  
pp. 1231-1242 ◽  
Author(s):  
MAREK CIEPLAK ◽  
TRINH XUAN HOANG

We consider two types of Go models of a protein (crambin) and study their kinetics through molecular dynamics simulations. In the first model, the residue–residue contact interactions are selected based on a cutoff distance, Rc. The folding times strongly depend on the value of Rc and nonmonotonically. This indicates a need for a physically determined set of native contacts. One may accomplish it by considering the van der Waals radii of the residual atoms and checking if the atoms overlap. In the second model, non-native attractive contacts are added to the system. This leads to bad foldability. However, for a small number of such extra contacts there is a slight acceleration in the kinetics of folding.


RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5507-5515
Author(s):  
Liang Song ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.


2015 ◽  
Vol 17 (45) ◽  
pp. 30307-30317 ◽  
Author(s):  
Sathish Kumar Mudedla ◽  
Ettayapuram Ramaprasad Azhagiya Singam ◽  
Kanagasabai Balamurugan ◽  
Venkatesan Subramanian

The complexation of siRNA with positively charged gold nanoclusters has been studied using classical molecular dynamics simulations.


CrystEngComm ◽  
2018 ◽  
Vol 20 (25) ◽  
pp. 3569-3580 ◽  
Author(s):  
Xiaoxiao Sui ◽  
Yongjian Cheng ◽  
Naigen Zhou ◽  
Binbing Tang ◽  
Lang Zhou

Based on the Stillinger–Weber potential, molecular dynamics simulations of the solidification processes of multicrystalline silicon were carried out.


RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13008-13017 ◽  
Author(s):  
Jun Liu ◽  
Haixiao Wan ◽  
Huanhuan Zhou ◽  
Yancong Feng ◽  
Liqun Zhang ◽  
...  

The formation mechanism of the bound rubber in elastomer nanocomposites using the coarse-grained molecular-dynamics simulations.


2020 ◽  
Vol 22 (3) ◽  
pp. 1154-1167 ◽  
Author(s):  
Khair Bux ◽  
Syed Tarique Moin

Molecular dynamics simulations were applied to an isolated cholesterol immersed in four different solvents of varying polarity, such as water, methanol, dimethyl sulfoxide and benzene, to gain insights into the structural and dynamical properties.


2018 ◽  
Vol 18 (20) ◽  
pp. 1755-1768 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Taj Mohammad ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Protein-ligand interaction is an imperative subject in structure-based drug design and protein function prediction process. Molecular docking is a computational method which predicts the binding of a ligand molecule to the particular receptor. It predicts the binding pose, strength and binding affinity of the molecules using various scoring functions. Molecular docking and molecular dynamics simulations are widely used in combination to predict the binding modes, binding affinities and stability of different protein-ligand systems. With advancements in algorithms and computational power, molecular dynamics simulation is now a fundamental tool to investigative bio-molecular assemblies at atomic level. These methods in association with experimental support have been of great value in modern drug discovery and development. Nowadays, it has become an increasingly significant method in drug discovery process. In this review, we focus on protein-ligand interactions using molecular docking, virtual screening and molecular dynamics simulations. Here, we cover an overview of the available methods for molecular docking and molecular dynamics simulations, and their advancement and applications in the area of modern drug discovery. The available docking software and their advancement including application examples of different approaches for drug discovery are also discussed. We have also introduced the physicochemical foundations of molecular docking and simulations, mainly from the perception of bio-molecular interactions.


1998 ◽  
Vol 53 (8) ◽  
pp. 655-658
Author(s):  
Masanori Sakurai ◽  
Ryuzo Takagi ◽  
Ashok K. Adyaa ◽  
Marcelle Gaune-Escard

Abstract Molecular dynamics simulations of molten DyCl3-NaCl were carried out at liquidus temperatures of the phase diagram. The chemical potential and the activity of NaCl was successfully estimated with the method proposed by Powles et al., which requires only positional data of the ions at the temperatures in question.


Sign in / Sign up

Export Citation Format

Share Document