scholarly journals Octahedral Co(III) salen complexes: the role of peripheral ligand electronics on axial ligand release upon reduction

2018 ◽  
Vol 96 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Chen Zhang ◽  
Mathew Sutherland ◽  
Khrystyna Herasymchuk ◽  
Ryan M. Clarke ◽  
John R. Thompson ◽  
...  

A series of octahedral CoIII salen complexes (where salen represents a N2O2 bis-Schiff-base bis-phenolate framework) were prepared with axial imidazole ligating groups. When using 1-methylimidazole (1-MeIm) axial ligands, the CoIII/CoII reduction potential could be altered by 220 mV via variation of the electron-donating ability of the para-ring substituents (R = H (1), OMe (2), tBu (3), Br (4), NO2 (5), and CF3 (6)). In addition, the irreversibility of the reduction process suggested substantial geometrical changes and axial ligand exchange upon reduction to the more labile CoII oxidation state. Installing an imidazole-coumarin conjugate as the axial ligands resulted in fluorescence quenching when bound to the CoIII centre (R = H (7), OMe (8), and CF3 (9)). The redox properties and fluorescence increase upon ligand release for 7–9 were studied under reducing conditions and in the presence of excess competing ligand (1-MeIm). It was determined that the Lewis acidity of the CoIII centre was the dominant factor in controlling axial ligand exchange for this series of complexes.

2005 ◽  
Vol 09 (04) ◽  
pp. 248-255 ◽  
Author(s):  
Xichuan Yang ◽  
Mikael Kritikos ◽  
Björn Åkermark ◽  
Licheng Sun

Bis(4-methylpyridine)phthalocyaninato ruthenium(II) has been synthesized. It was proved by single-crystal X-ray diffraction that the central Ru(II) atom is bonded to six N atoms in an elongated octahedral configuration, and the axial ligands have a significantly longer Ru - N bond distance, 2.101(4) Å, than the independent pyrrol Ru - N bond, 1.99 Å. Therefore, the axial ligands can be exchanged by other ligands. The ligand exchange reactions with diethyl pyridyl-4-phosphonate and diethyl pyridylmethyl-4-phosphonate were studied in high boiling-point solvents at elevated temperatures, ca 160 °C. Mono-ligand as well as double-ligand replaced complexes were obtained. The complexes have been isolated by column chromatography. These complexes have potential applications, such as in dye sensitized solar cells.


1995 ◽  
Vol 60 (7) ◽  
pp. 1140-1157 ◽  
Author(s):  
Ljiljana S. Jovanovic ◽  
Luka J. Bjelica

The electrochemistry of four novel Fe(III) complexes of the type [Fe(L)Cl], involving quadridentate ligands based on the condensation products of benzoylacetone-S-methylisothiosemicarbazone with salicylaldehyde, 5-chlorosalicylaldehyde, 3,5-dichlorosalicylaldehyde or 5-nitrosalicylaldehyde, was studied in DMF and DMSO at a GC electrode. All complexes undergo a two-step one-electron reductions, usually complicated by chemical reactions. In solutions containing Cl-, the ligand-exchange reactions Cl--DMF and Cl--DMSO take place. Stability of the chloride-containing complexes was discussed in terms of the coordinated ligand effect, oxidation state of the central atom and, in particular, of the donor effect of the solvent. Some relevant kinetic data were calculated.


2021 ◽  
Vol 23 (5) ◽  
pp. 3467-3478
Author(s):  
J. I. Paez-Ornelas ◽  
H. N. Fernández-Escamilla ◽  
H. A. Borbón-Nuñez ◽  
H. Tiznado ◽  
Noboru Takeuchi ◽  
...  

Atomic description of ALD in systems that combine large surface area and high reactivity is key for selecting the right functional group to enhance the ligand-exchange reactions.


2014 ◽  
Vol 1844 (7) ◽  
pp. 1268-1278 ◽  
Author(s):  
Laura Ragona ◽  
Katiuscia Pagano ◽  
Simona Tomaselli ◽  
Filippo Favretto ◽  
Alberto Ceccon ◽  
...  

1994 ◽  
Vol 26 (3-4) ◽  
pp. 339-344 ◽  
Author(s):  
F. Pinna ◽  
M. Signoretto ◽  
G. Strukul ◽  
G. Cerrato ◽  
C. Morterra

2000 ◽  
Vol 297 (1-2) ◽  
pp. 11-17 ◽  
Author(s):  
Kathleen M. Vogel ◽  
Pawel M. Kozlowski ◽  
Marek Z. Zgierski ◽  
Thomas G. Spiro
Keyword(s):  

2010 ◽  
Vol 645-648 ◽  
pp. 271-276 ◽  
Author(s):  
Robert E. Stahlbush ◽  
Rachael L. Myers-Ward ◽  
Brenda L. VanMil ◽  
D. Kurt Gaskill ◽  
Charles R. Eddy

The recently developed technique of UVPL imaging has been used to track the path of basal plane dislocations (BPDs) in SiC epitaxial layers. The glide of BPDs during epitaxial growth has been observed and the role of this glide in forming half-loop arrays has been examined. The ability to track the path of BPDs through the epitaxy has made it possible to develop a BPD reduction process for epitaxy grown on 8° offcut wafers, which uses an in situ growth interrupt and has achieved a BPD reduction of > 98%. The images also provide insight into the strong BPD reduction that typically occurs in epitaxy grown on 4° offcut wafers.


Sign in / Sign up

Export Citation Format

Share Document