scholarly journals Molecular dynamics simulation on the morphology of 1,1-diamino-2,2-dinitroethylene (FOX-7) affected by dimethyl sulfoxide (DMSO) and temperature

2019 ◽  
Vol 97 (7) ◽  
pp. 538-545 ◽  
Author(s):  
Guanchao Lan ◽  
Shaohua Jin ◽  
Jing Li ◽  
Zhiyan Lu ◽  
Jian Ruan ◽  
...  

The attachment energy (AE) model is adopted to research the influence of dimethyl sulfoxide (DMSO) and temperature on the crystal morphology of 1,1-diamino-2,2-dinitroethylene (FOX-7). FOX-7 crystal habits in DMSO at different temperatures simulated by the AE model have apparently changed compared with the vacuum morphology, indicating that the solvent and temperature can affect FOX-7 morphology. Moreover, the influence of model dimension on the attachment energy has been studied, and a reasonable model size is obtained based on the model dimension study results. Besides, the radial distribution function analysis shows that the solvent molecules adsorb on the FOX-7 surfaces mainly via the solvent–crystal interface interactions of van der Waals forces (vdW) and Coulomb interactions. The analysis of diffusion coefficient of DMSO molecules on the crystal growth surfaces shows that the growth habit is also influenced by the diffusion capacity of DMSO molecules. These simulation results of this study can provide some guidance for the crystallization process of FOX-7.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yanpeng Zhao ◽  
Guanwen Su ◽  
Guozhao Liu ◽  
Hongyuan Wei ◽  
Leping Dang

The effects of thirteen binary solvent systems on the growth of CL-20 were studied by molecular dynamics simulation, and the effect of antisolvent properties on the solvent inhibition was systematically investigated.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 9096-9105 ◽  
Author(s):  
Gholam Hossien Rounaghi ◽  
Mostafa Gholizadeh ◽  
Fatemeh Moosavi ◽  
Iman Razavipanah ◽  
Hossein Azizi-Toupkanloo ◽  
...  

The variation of molar conductance versus mole ratio for (kryptofix 22DD·La)3+ complex in methanol solution at different temperatures is in accordance with the variation of pair correlation function of oxygen atoms.


2016 ◽  
Vol 30 (01) ◽  
pp. 1550253 ◽  
Author(s):  
Xinjian Liu ◽  
Yu Jin ◽  
Congliang Huang ◽  
Jingfeng He ◽  
Zhonghao Rao ◽  
...  

Temperature and pressure have direct and remarkable implications for drying and dewatering effect of low rank coals such as lignite. To understand the microenergy change mechanism of lignite, the molecular dynamics simulation method was performed to study the self-diffusion of lignite/water under different temperatures and pressure. The results showed that high temperature and high pressure can promote the diffusion of lignite/water system, which facilitates the drying and dewatering of lignite. The volume and density of lignite/water system will increase and decrease with temperature increasing, respectively. Though the pressure within simulation range can make lignite density increase, the increasing pressure showed a weak impact on variation of density.


2013 ◽  
Vol 69 (2) ◽  
pp. m91-m91 ◽  
Author(s):  
Shahrbano Foladi ◽  
Parivash Khazaei ◽  
Jafar Attar Gharamaleki ◽  
Behrouz Notash ◽  
Mohammad Kazem Rofouei

In the centrosymmetric tetranuclear title molecule, [Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OS, the two independent tinIVatoms show distorted trigonal–bipyramidal SnC2O3and SnC2O2Cl coordination geometries. The four tinIVatoms are bridged by the hydroxo and oxo ligands, forming a ladder-like array of three edge-connected Sn2O2squares. The solvent molecules are linked to the tetranuclear moleculeviaO–H...O hydrogen bonds.


2021 ◽  
Author(s):  
Julian Brunner ◽  
Britta Maier ◽  
Sabrina L. J. Thomä ◽  
Felizitas Kirner ◽  
Igor Baburin ◽  
...  

In this study, faceted mesocrystals have been assembled from the dispersion of truncated cubic-shaped iron oxide nanoparticles stabilized by oleic acid (OA) molecules using the non-solvent “gas phase diffusion technique” into an organic solvent. The effects of synthesis conditions as well as of the nanoparticle size and shape on the structure and morphogenesis of mesocrystals were examined. The interactions of OA capped iron oxide nanoparticles with solvent molecules were probed by analytical ultracentrifugation and double difference pair distribution function analysis. It was shown that the structure of the organic shell significantly depends on the nature and polarity of solvent molecules.


2021 ◽  
Vol 2 (1) ◽  
pp. 012-027
Author(s):  
M. Sathish ◽  
K. Venkataramanan ◽  
R. Padmanaban ◽  
Helan Ruth ◽  
K. Vadivel ◽  
...  

In this work, acoustic, thermal, and optical properties were tested on the different concentrations of the Disodium Tartrate solutions. First, the viscosity studies were analyzed for the Disodium tartrate in the concentration range from 2% to 20% with different temperatures 303K, 308K, 313K, and 318K. It was noted that the relative viscosity and the activation energy of the prepared compound increase with increases in concentration and decreases with temperature increases. The properties like density and ultrasonic velocity are varied when increases the concentration of the aqueous solutions of Disodium Tartrate. In this study, the values of adiabatic compressibility show an inverse behavior when compared with ultrasonic velocity due to the interaction between solute and solvent molecules. Also observed that the inter-molecular free length is maximum for a lower percentage. The free volume for the compound is maximum at 2% and a minimum of 20%, since it reduces when the internal pressure increases. It was revealed that the classical absorption coefficient and relaxation time for Disodium Tartrate is minimum for lower percentage and minimum for a higher percentage. The interactions between the solute and solvent are confirmed through the property like specific Acoustical impedance. It was noted that the increase in internal pressure increases the concentration of the compound. The ion-solvent interaction was discussed by the relative association study, thus the values of relative association increases with an increase in concentration. The Rao’s and Wada’s constant increases linearly in aqueous solutions of Disodium Tartrate for the entire system.


2020 ◽  
Vol 22 (3) ◽  
pp. 1154-1167 ◽  
Author(s):  
Khair Bux ◽  
Syed Tarique Moin

Molecular dynamics simulations were applied to an isolated cholesterol immersed in four different solvents of varying polarity, such as water, methanol, dimethyl sulfoxide and benzene, to gain insights into the structural and dynamical properties.


2020 ◽  
Vol 35 ◽  
pp. 18-28
Author(s):  
Muhammad Rubayat Bin Shahadat ◽  
A.K.M.M. Morshed

Non-equilibrium molecular dynamics simulations have been employed to study the explosive boiling phenomena of water over a hot copper plate. The molecular system was comprised of three sections: solid copper wall, liquid water, and water vapor. A few layers of the liquid water were placed on the solid Cu surface. The rest of the simulation box was filled with water vapor. Initially, the water molecules were equilibrated by using Berendsen thermostat at 298 K. Then heat was given to the copper plate at different temperatures so that explosive boiling occurs. After achieving the equilibrium by performing the previous two steps, the liquid water at 298 K is suddenly dropped on the hot plate. NVE ensemble was used in the simulation and the temperature of the copper plate was controlled to different temperatures with phantom atom thermostat. Four temperatures (400K, 500K, 650 K and 1000K) were taken to study the explosive boiling. The simulation results show that, the explosive boiling temperature of water on Cu plate is 500 K temperature. At this point, the energy flux was found 1.79x108 J/m3 which is very promising with the experimental results. Moreover, if the temperature of the surface was increased the explosive boiling occurred at a faster rate. The simulation results also show that explosive boiling occurs earlier for the hydrophilic surface than hydrophobic surface as for the hydrophilic surface the water attracted the Cu plate more than the hydrophobic surface and so the amount of energy transfer is more for the hydrophilic surface.


2019 ◽  
Vol 75 (1) ◽  
pp. 65-69
Author(s):  
Wyatt Cole ◽  
Stephanie L. Hemmingson ◽  
Audrey C. Eisenberg ◽  
Catherine A. Ulman ◽  
Joseph M. Tanski ◽  
...  

Four 2,2′-bisindolylmethanes (BIMs), a useful class of polyindolyl species joined to a central carbon, were synthesized using salicylaldehyde derivatives and simple acid catalysis; these are 2-[bis(3-methyl-1H-indol-2-yl)methyl]-6-methylphenol, (IIa), 2-[bis(3-methyl-1H-indol-2-yl)methyl]-4,6-dichlorophenol, (IIb), 2-[bis(3-methyl-1H-indol-2-yl)methyl]-4-nitrophenol, (IIc), and 2-[bis(3-methyl-1H-indol-2-yl)methyl]-4,6-di-tert-butylphenol, (IId). BIMs (IIa) and (IIb) were characterized crystallographically as the dimethyl sulfoxide (DMSO) disolvates, i.e. C26H24N2O·2C2H6OS and C25H20Cl2N2O·2C2H6OS, respectively. Both form strikingly similar one-dimensional hydrogen-bonding chain motifs with the DMSO solvent molecules. BIM (IIa) packs into double layers of chains whose orientations alternate every double layer, while (IIb) forms more simply packed chains along the a axis. BIM (IIa) has a remarkably long c axis.


Sign in / Sign up

Export Citation Format

Share Document