Incorporating the effects of upstream ice jam releases in the prediction of flood levels in the Hay River delta, Canada

2017 ◽  
Vol 44 (8) ◽  
pp. 643-651 ◽  
Author(s):  
Michael De Coste ◽  
Yuntong She ◽  
Julia Blackburn

The town of Hay River, located in the Northwest Territories, Canada, is vulnerable to ice jam flooding occurring in the adjacent Hay River delta. The most extreme flooding events have occurred when ice jams in the channels of the delta were pushed downstream towards the mouth at Great Slave Lake. This movement has been linked to incoming waves from ice jam release in the upstream reaches of the Hay River. This study incorporated the effect of an upstream ice jam release wave into the prediction of ice jam caused flood levels in the delta by integrating three one-dimensional models. The method was validated with observed breakup events and then used to simulate various combinations of ice and water conditions in the river and the delta. Multiple linear regression analyses were applied to the results to develop a prediction tool for assessing ice jam flood risk.

1982 ◽  
Vol 9 (2) ◽  
pp. 276-284 ◽  
Author(s):  
S. Beltaos ◽  
B. G. Krishnappan

Accounts by witnesses of spring ice breakup in rivers often mention violent ice runs with extreme water speeds and rapidly rising water levels. Such events are believed to follow the release of major ice jams. To gain preliminary understanding of this problem, an attempt is made to reconstruct a partially documented ice jam release reported recently by others. The equations of the ice–water flow that occurs after the release of an ice jam are formulated. It is shown that the problem may be approximately treated as a one-dimensional, unsteady, water-only flow of total depth identical to that of the ice–water flow, and average velocity. The retarding effect of the frequently encountered intact ice cover below the jam is considered implicitly, that is, by adjusting the friction factor so as to make the predicted and observed downstream stages equal. The effects of jam length are considered next by assuming longer jams of the same maximum water depth. The duration of the surging velocities increases with jam length and so does the peak stage. Less than 2 h after the jam release the surge was arrested and a new jam formed, causing further stage increases. Present capabilities of modelling the reformation process are discussed and the major unknowns identified.


2012 ◽  
Vol 39 (6) ◽  
pp. 701-712 ◽  
Author(s):  
M. Brayall ◽  
F.E. Hicks

Ice jam floods can present an annual threat to communities adjacent to rivers, especially those situated at river confluences, island or deltas. The objective of this study was to determine whether 2-D modeling might be used to predict expected ice jam flood elevations for such multi-channel systems. The Hay River delta was selected as the demonstration site for this study, and 2-D modeling was employed to calculate ice jam flood levels expected for varying inflow discharge conditions. The River2D model was calibrated for historical ice jam profiles covering a range of discharges from 268 to 1000 m3/s and a relationship was developed to predict the flow split down the East and West Channels based on the inflow discharge to the delta. Also, ice jam rating curves were developed at 0.5 km intervals along each channel facilitating the development of an ice jam profile prediction tool for use by the Town of Hay River.


1992 ◽  
Vol 19 (2) ◽  
pp. 212-223 ◽  
Author(s):  
S. J. Stanley ◽  
R. Gerard

Much of the town of Hay River, N.W.T., is located on the low-lying land of the Hay River delta, and is subject to severe ice jam floods every decade or so. As a first line of defence against these floods, it was proposed that an ice jam flood forecast procedure be developed. The major components of the study included a review of historical flood data, resident interviews, field surveys, and observations of the delta ice regime. It was found that a 1–2 day forecast of discharge in Hay River can be directly determined from discharges measured at a Water Survey of Canada gauging station upstream. From this and from an understanding of the breakup ice regime developed from the study as well as the water level–discharge relations determined for ice jams at three locations in the delta, it was possible to develop a first-generation ice jam flood forecasting procedure that gave a 1–2 day warning of high water at each of the three locations. The procedure was evaluated against the breakup events of 1988 and 1989 with reasonable success. The development and application of this procedure is described in the paper. Key words: rivers, floods, ice jams, forecasting.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1105-1116 ◽  
Author(s):  
P. Bellotti ◽  
G. Calderoni ◽  
F. Di Rita ◽  
M. D’Orefice ◽  
C. D’Amico ◽  
...  

Geomorphologic, stratigraphic, faunistic, palynological and carbon isotope analyses were carried out in the area of the Tiber river mouth. The results depict a complex palaeoenvironmental evolution in the area of the Roman town of Ostia, ascertain the changes of the Tiber river delta over the last 6000 years and support a re-interpretation of some archaeologic issues. The wave-dominated Tiber delta evolved through three distinct phases. In the first step (5000–2700 yr BP) a delta cusp was built at the river mouth, which was located north of the present outlet. Subsequently (2700–1900 BP), an abrupt southward migration of the river mouth determined the abandonment of the previous cusp and the progradation of a new one. The third step, which is still in progress, is marked by the appearance of a complex cusp made up of two distributary channels. The transition from the first to the second evolution phase occurred in the seventh century bc and was contemporary to the foundation of Ostia, as suggested by historical accounts. However, the oldest archaeological evidence of the town of Ostia dates to the fourth century bc, when human activity is clearly recorded also by pollen data. We suggest that the first human settlement (seventh century bc) consisted of ephemeral military posts, with the aim of controlling the strategic river mouth and establishing the Ostia saltworks. Only after the fourth century bc the coastal environment was stable enough for the foundation and development of the town of Ostia.


1990 ◽  
Vol 17 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Harold S. Belore ◽  
Brian C. Burrell ◽  
Spyros Beltaos

In Canada, flooding due to the rise in water levels upstream of an ice jam, or the temporary exceedance of the flow and ice-carrying capacity of a channel upon release of an ice jam, has resulted in the loss of human life and extensive economic losses. Ice jam mitigation is a component of river ice management which includes all activities carried out to prevent or remove ice jams, or to reduce the damages that may result from an ice jam event. This paper presents a brief overview of measures to mitigate the damaging effects of ice jams and contains a discussion on their application to Canadian rivers. Key words: controlled ice breakup, flood control, ice jams, ice management, river ice.


Author(s):  

Features of present-day channel deformations of the Tom' River within the Tomsk region and related processes of the ice jams’ formation have been considered. Recommendations about prevention of their negative consequences have been offered. They include organizational, scientific/information and engineering measures of the damages prevention against dangerous hydrological processes under consideration.


2021 ◽  
pp. 1420326X2110485
Author(s):  
Junqi Wang ◽  
Chuck Wah Yu ◽  
Shi-Jie Cao

2018 ◽  
Vol 45 ◽  
pp. 389-395 ◽  
Author(s):  
Branka Cuca ◽  
Luigi Barazzetti

Abstract. The monitoring of hazardous events through change detection has an important role in the emergency management. Such actions can be performed shortly after the hazardous event for first rapid mapping but also over longer periods of time for recovery purposes and risk mapping. The use of medium resolution free-of-charge multi-spectral satellite imagery for purposes of flood extension and impact monitoring can be extremely valuable due to their ability to offer an “easy” and remote access to information, even in cases of extreme weather conditions, but also due to their high compatibility with GIS environments. The case study regards Centa River estuary that hosts an important archaeological site of Albenga within the boundaries of its riverbed. The authors propose a workflow that uses Copernicus Sentinel-2 data to provide the comparison changes firstly in the single relevant bands and successively in the indexes NDVI e NDWI, suitable for the estimation of water component. The results of this study were useful for observing the extension of the flooded area, to evaluate its impact on the archaeological remains and to further propose more targeted UAV-born and ground survey.


2021 ◽  
Author(s):  
Fatemehalsadat Madaeni ◽  
Karem Chokmani ◽  
Rachid Lhissou ◽  
Saeid Homayuni ◽  
Yves Gauthier ◽  
...  

Abstract. In cold regions, ice-jam events result in severe flooding due to a rapid rise in water levels upstream of the jam. These floods threaten human safety and damage properties and infrastructures as the floods resulting from ice-jams are sudden. Hence, the ice-jam prediction tools can give an early warning to increase response time and minimize the possible corresponding damages. However, the ice-jam prediction has always been a challenging problem as there is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological conditions happen, a few hours to a few days before the event. The ice-jam prediction problem can be considered as a binary multivariate time-series classification. Deep learning techniques have been successfully applied for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In this research, we successfully applied CNN, LSTM, and combined CN-LSTM networks for ice-jam prediction for all the rivers in Quebec. The results show that the CN-LSTM model yields the best results in the validation and generalization with F1 scores of 0.82 and 0.91, respectively. This demonstrates that CNN and LSTM models are complementary, and a combination of them further improves classification.


Sign in / Sign up

Export Citation Format

Share Document