Influence of surface footing loading on soil arching above multiple buried structures in transparent sand

Author(s):  
Zhen Zhang ◽  
Fengjuan Tao ◽  
Jie Han ◽  
Guanbao Ye ◽  
Bingnan Cheng ◽  
...  

Constructing a new buried structure nearby an existing one or constructing multiple buried structures in close proximity may change overburden stresses, induce ground movement, and affect soil–structure interaction. Such issues become more complex when these nearby buried structures are subjected to surface cyclic footing loading. Cyclic loading is expected to have different influences on the buried structures from static loading. This paper presents two-dimensional trapdoor tests with transparent soil to investigate the influences of static versus cyclic surface loading, number of trapdoors, overburden soil height, and load frequency on soil arching above single or multiple adjacent buried structures. The particle image velocimetry technique was adopted to monitor soil movements during testing. The test results showed that soil arching degraded more under cyclic loading than under static loading. The interaction of buried structures, the thin overburden soil, and the high load frequency accelerated soil arching degradation and induced larger ground surface displacement.

Author(s):  
Bengt Fellenius

Results of a static loading test were used together with soil exploration records in a survey comprising analysis of the test records and estimating settlement of piled foundation to support a pipe rack. The test pile was a strain-gage instrumented, 400-mm diameter, precast, prestressed concrete pile driven into a clay and silt deposit to 25 m embedment. Two main issues were expected to be addressed by the survey participants: First, realization that the strain records were affected by presence of residual force in the pile and, second, calculation of the settlement of the piled foundation expected from the foundation load. A total of 52 submissions were received from 20 different countries. Only 12 of the submissions realized the presence of residual force. Most submissions reported a calculated settlement of the piled foundations ranging from 10 mm through 50 mm; however, 11 reported values between 60 and 200 mm. Surprisingly, only 20 submissions reported ground surface settlement close to the 200-mm value resulting from text-book analysis based on the available information. The subsequent construction of the piled foundations coincided with placing a fill across the site and lowering of the groundwater table, thus, causing a general subsidence.


Author(s):  
Atsushi Iwashita ◽  
Marina Kudo ◽  
Hisatoshi Baba ◽  
Toshikazu Morohoshi ◽  
Masanao Hara ◽  
...  

Author(s):  
Jack Park ◽  
Lisa Wheeler ◽  
Katherine Johnston ◽  
Mike Statters

Abstract When new pipelines are constructed, they often cross existing major infrastructure, such as railways. To reduce potential service disruption, it is a common practice to complete these crossings using trenchless technologies. Without proper methods and oversight in planning and construction, there may be serious safety and financial implications to the operators of the railways and the public due to unacceptable settlement or heave. If movement tolerances are exceeded, the schedule and financial loss to the railway operators could be in the millions of dollars per day. Recent construction of a new pipeline across the Canadian prairies implemented ground movement monitoring plans at 19 trenchless railway crossings in order to reduce the potential for impact to the track and railway operations. The specifics of the plan varied for each site and were based on the expected ground conditions, as well as permit requirements from the various railway operators, but typically included ground movement monitoring surveys, observation of the cuttings, recommendations for a soil plug at the leading edge of the bore casing, and frequent communication with both the railway operators and the contractors. For all crossings, the expected soil and groundwater conditions were obtained from pre-construction boreholes and confirmed during excavation of the bore bays. Based on the expected ground conditions, appropriate soil plug lengths, if required, were recommended. In general, fine-grained clay/silt-dominated soils needed minimal to no soil plug in order to minimize the potential for ground heave, while coarser-grained sand-dominated soils needed a longer soil plug in order to reduce the potential for “flowing soil” which would cause over excavation along the bore path. Prior to boring, surface monitoring points were established along the tracks to monitor for changes in the ground surface elevation. Additional subsurface points were installed for crossings where the potential for over excavation was higher. These monitoring points were surveyed before, throughout, and following completion of construction, and the frequency of the surveys was increased when the movement was nearing or exceeding specified tolerances. The effort to monitor and reduce the potential for ground movement was a coordinated effort between the geotechnical engineers, railway operators, and construction contractors. The purpose of this paper is to present the lessons learned from the 19 trenchless railway crossings, including the challenges and successes. Recommendations for ground movement monitoring are also provided to help guide railway operators, design and geotechnical engineers, and contractors during the construction of future trenchless pipeline crossings of railway infrastructure.


2020 ◽  
Vol 29 (1) ◽  
pp. 291-309 ◽  
Author(s):  
Laurance Donnelly

AbstractOne of the geohazards associated with coal mining is subsidence. Coal was originally extracted where it outcropped, then mining became progressively deeper via shallow workings including bell pits, which later developed into room-and-pillar workings. By the middle of the 1900s, coal was mined in larger open pits and underground by longwall mining methods. The mining of coal can often result in the subsidence of the ground surface. Generally, there are two main types of subsidence associated with coal mining. The first is the generation of crown holes caused by the collapse of mine entries and mine roadway intersections and the consolidation of shallow voids. The second is where longwall mining encourages the roof to fail to relieve the strains on the working face and this generates a subsidence trough. The ground movement migrates upwards and outwards from the seam being mined and ultimately causes the subsidence and deformation of the ground surface. Methods are available to predict mining subsidence so that existing or proposed structures and land developments may be safeguarded. Ground investigative methods and geotechnical engineering options are also available for sites that have been or may be adversely affected by coal mining subsidence.


2020 ◽  
Vol 57 (6) ◽  
pp. 903-920 ◽  
Author(s):  
Zongqi Bi ◽  
Quanmei Gong ◽  
Peijun Guo ◽  
Qian Cheng

Arching effect, which is a common phenomenon in any system involving soil–structure interaction, has been found to be inevitably affected by various factors, including loading conditions. This study investigated the evolution of arching effect induced by cyclic loading by conducting a series of tests using a trapdoor apparatus. The test box was instrumented to control the displacement of the moving gate and to record the variation of vertical stress distribution by using a set of dynamic load cells. Digital images were captured during tests and processed using particle image velocimetry (PIV) to determine the displacement field and hence to examine the variation of geometric features of arch and particle movements. The evolution process of arching effect, from the initial formation to the finial collapse, was identified. Depending on the analysis for the geometry appearance, displacement region, and variation of cyclic stresses, both stable and collapsed arches were observed. By increasing the amplitude of cyclic loading step by step, critical loading amplitude corresponding to the threshold of collapse of the arching effect was determined. Based on the results, the effects of trapdoor displacement, cyclic loading frequency, and filling height on arching effect are discussed.


Author(s):  
Haruyuki Yamamoto ◽  
He Huang

Some simplified design methods were proposed to predict behavior of lateral loaded piled-raft foundations on homogenous soil. One of them is the cone model method. However, only one average solution of pile behavior can be given by this method. It can’t evaluate the location factors of piles. Therefore, this paper describes a new simplified method to predict behavior of lateral loaded piled raft foundations covering the location factor of piles. At first, ground surface displacement is derived theoretically by Cerutti’s solution, then assuming that the raft foundation has rigid stiffness, these displacements are the same to calculation lateral loading distribution. Second, the ground displacement where pile placed could be estimated under calculated lateral loading. Third, the piles behavior are evaluated based on these lateral ground displacements. In addition, 3-D FEM numerical analysis were performed to compared with these solutions.


Author(s):  
C. Zoccarato ◽  
D. Baù ◽  
F. Bottazzi ◽  
M. Ferronato ◽  
G. Gambolati ◽  
...  

Abstract. Fluid extraction from producing hydrocarbon reservoirs can cause anthropogenic land subsidence. In this work, a 3-D finite-element (FE) geomechanical model is used to predict the land surface displacements above a gas field where displacement observations are available. An ensemble-based data assimilation (DA) algorithm is implemented that incorporates these observations into the response of the FE geomechanical model, thus reducing the uncertainty on the geomechanical parameters of the sedimentary basin embedding the reservoir. The calibration focuses on the uniaxial vertical compressibility cM, which is often the geomechanical parameter to which the model response is most sensitive. The partition of the reservoir into blocks delimited by faults motivates the assumption of a heterogeneous spatial distribution of cM within the reservoir. A preliminary synthetic test case is here used to evaluate the effectiveness of the DA algorithm in reducing the parameter uncertainty associated with a heterogeneous cM distribution. A significant improvement in matching the observed data is obtained with respect to the case in which a homogeneous cM is hypothesized. These preliminary results are quite encouraging and call for the application of the procedure to real gas fields.


Sign in / Sign up

Export Citation Format

Share Document