Influence of Headwater Reservoirs on Climate Change Impacts and Flood Frequency in the Kabul River Basin

Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Bahram Gharabaghi ◽  
Edward McBean ◽  
Prasad Daggupati ◽  
...  

While climate change impacts vary globally, for the Kabul River Basin (KRB), concerns are primarily associated with frequent flooding. This research describes the influence of headwater reservoirs on projections of climate change impacts and flood frequency, and how the riparian countries can benefit from storing of floodwaters for use during dry seasons. Six climate change scenarios and two Representative Concentration Pathways (RCPs) are used in three periods of a quarter-century each. The Soil and Water Assessment Tool (SWAT) is used to assess how the proposed reservoirs will reduce flooding by ~38% during the wet season, reduce the flood frequency from five to 25 years return period, and increase low flows by ~110% during the dry season, which reflect an ~17.5% reduction in the glacier-covered area by the end of the century. The risks and benefits of reservoirs are highlighted in light of the developmental goals of Afghanistan and Pakistan.

2002 ◽  
Vol 6 (2) ◽  
pp. 197-209 ◽  
Author(s):  
F. Bouraoui ◽  
L. Galbiati ◽  
G. Bidoglio

Abstract. This study assessed the impact of potential climate change on the nutrient loads to surface and sub-surface waters from agricultural areas and was conducted using the Soil and Water Assessment Tool (SWAT) model. The study focused on a 3500 km2 catchment located in northern England, the Yorkshire Ouse. The SWAT model was calibrated and validated using sets of five years' measurements of nitrate and ortho-phosphorus concentrations and water flow. To increase the reliability of the hydrological model predictions, an uncertainty analysis was conducted by perturbing input parameters using a Monte-Carlo technique. The SWAT model was then run using a baseline scenario corresponding to an actual measured time series of daily temperature and precipitation, and six climate change scenarios. Because of the increase in temperature, all climate scenarios introduced an increase of actual evapotranspiration. Faster crop growth and an increased nutrient uptake resulted, as did an increase of annual losses of total nitrogen and phosphorus, however, with strong seasonal differences. Keywords: SWAT model, climate change, nutrient loads


2017 ◽  
Vol 9 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Hamed Rouhani ◽  
Marayam Sadat Jafarzadeh

Abstract A general circulation model (GCM) and hydrological model SWAT (Soil and Water Assessment Tool) under forcing from A1B, B1, and A2 emission scenarios by 2030 were used to assess the implications of climate change on water balance of the Gorganrood River Basin (GRB). The results of MPEH5C models and multi-scenarios indicated that monthly precipitation generally decreases while temperature increases in various parts of the basin with the magnitude of the changes in terms of different stations and scenarios. Accordingly, seasonal ET will decrease throughout the GRB over the 2020s in all seasons except in summer, where a slight increase is projected for A1B and A2 scenarios. At annual scale, average quick flow and average low flow under the B1, A1B, and A2 scenarios are projected to decrease by 7.3 to 12.0% from the historical levels. Over the ensembles of climate change scenarios, the simulations project average autumn total flow declines of ∼10% and an overall range of 6.9 to 13.2%. In summer, the components of flow at the studied basin are expected to increase under A2 and A1B scenarios but will slightly decrease under B1 scenario. The study result addresses a likelihood of inevitable future climate change.


2016 ◽  
Vol 4 (8) ◽  
pp. 161-173
Author(s):  
Stephen Kibe Rwigi ◽  
Jeremiah N. Muthama ◽  
Alfred O. Opere ◽  
Franklin J. Opijah ◽  
Francis N. Gichuki

Potential impacts of climate change on surface water yields over the Sondu River basin in the western region of Kenya were analysed using the Soil and Water Assessment Tool (SWAT) model with climate input data obtained from the fourth generation coupled Ocean-Atmosphere European Community Hamburg Model (ECHAM4) using the Providing Regional Climates for Impacts Studies (PRECIS) model. Daily time step regional climate scenarios at a spatial grid resolution of 0.44Ëš over the Eastern Africa region were matched to the Sondu river basin and used to calibrate and validate the SWAT model.Analysis of historical and projected rainfall over the basin strongly indicated that the climate of the area will significantly change with wetter climates being experienced by 2030 and beyond. Projected monthly rainfall distribution shows increasing trends in the relatively dry DJF and SON seasons while showing decreasing trends in the relatively wet MAM and JJA seasons. Potential changes in water yields resulting from climate change were computed by comparing simulated yields under climate change scenarios with those simulated under baseline conditions. There was evidence of substantial increases in water yields ranging between 88% and 110% of the baseline yields by 2030 and 2050 respectively. Although simulated water yields are subject to further verification from observed values, this study has provided useful information about potential changes in water yields as a result of climate change over the Sondu River basin and in similar basins in this region.


2018 ◽  
Vol 114 (06) ◽  
pp. 1304 ◽  
Author(s):  
Massouda Sidiqi ◽  
Sangam Shrestha ◽  
Sarawut Ninsawat

2019 ◽  
Vol 98 ◽  
pp. 06014
Author(s):  
Yali Woyessa

The main aim of this paper is to assess the impact of regional climate change scenarios on the availability of water resources in a semi-arid river basin in South Africa using a hydrological model called Soil and Water Assessment Tool (SWAT). In this paper, climate change data was derived from two downscaling approaches, namely statistical downscaling experiment (SDE) and dynamic downscaling (CORDEX). These were derived from the GCM simulations of the Coupled Model Inter-comparison Project Phase-5 (CMIP5) and across two greenhouse gas emission scenarios known as Representative Concentration Pathways (RCP) 4.5 and 8.5. The spatial resolution of the dataset for the SDE method is 25 km × 25 km and 50 km × 50 km for the CORDEX method. Six GCM models were used for SDE set of data and four for the CORDEX set of data. SWAT model was run using these data for a period of up to mid-century (2020 – 2050) for SDE and for a period of up to the end of this century (2020 – 2100) for CORDEX data. The results were then compared with long-term historical data (1975-2005). Comparison of measured data with simulated historical data showed strong correlation (R2 = 0.95 for SDE data and R2 = 0.92 for CORDEX data), which is indicative of the reliability of projected future climate.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1426
Author(s):  
Aminjon Gulakhmadov ◽  
Xi Chen ◽  
Nekruz Gulahmadov ◽  
Tie Liu ◽  
Muhammad Naveed Anjum ◽  
...  

Millions of people in Uzbekistan, Turkmenistan, Tajikistan, and Kyrgyzstan are dependent on the freshwater supply of the Vakhsh River system. Sustainable management of the water resources of the Vakhsh River Basin (VRB) requires comprehensive assessment regarding future climate change and its implications for streamflow. In this study, we assessed the potential impacts of projected climate change scenarios on the streamflow in the VRB for two future periods (2022–2060 and 2061–2099). The probable changes in the regional climate system were assessed using the outputs of five global climate models (GCMs) under two representative concentration pathways (RCPs), RCP4.5 and RCP8.5. The probable streamflow was simulated using a semi-distributed hydrological model, namely the Soil and Water Assessment Tool (SWAT). Evidence of a significant increase in the annual average temperature by the end of the 21st century was found, ranging from 2.25 to 4.40 °C under RCP4.5 and from 4.40 to 6.60 °C under RCP8.5. The results of three GCMs indicated a decreasing tendency of annual average precipitation (from −1.7% to −16.0% under RCP4.5 and from −3.4% to −29.8% under RCP8.5). Under RCP8.5, two GCMs indicated an increase (from 2.3% to 5.3%) in the average annual precipitation by the end of 2099. The simulated results of the hydrological model reported an increasing tendency of average annual streamflow, from 17.5% to 52.3% under both RCPs, by the end of 2099. A shift in the peak flow month was also found, i.e., from July to June, under both RCPs. It is expected that in the future, median and high flows might increase, whereas low flow might decrease by the end of 2099. It is concluded that the future seasonal streamflow in the VRB are highly uncertain due to the probable alterations in temperature and precipitation. The findings of the present study could be useful for understanding the future hydrological behavior of the Vakhsh River, for the planning of sustainable regional irrigation systems in the downstream countries, i.e., Uzbekistan and Turkmenistan, and for the construction of hydropower plants in the upstream countries.


Author(s):  
Sujeet Desai ◽  
D. K. Singh ◽  
Adlul Islam ◽  
A. Sarangi

Abstract Climate change impact on the hydrology of the Betwa river basin, located in the semi-arid region of Central India, was assessed using the Soil and Water Assessment Tool (SWAT), driven by hypothetical scenarios and Model of Interdisciplinary Research on Climate version 5 (MIROC5) Global Circulation Model projections. SWAT-Calibration and Uncertainty Programs (SWAT-CUP) was used for calibration and validation of SWAT using multi-site streamflow data. The coefficient of determination, Nash–Sutcliffe efficiency, RMSE-observations standard deviation ratio and percent bias during calibration and validation period varied from 0.83–0.92, 0.6–0.91, 0.3–0.63 and −19.8–19.3, respectively. MIROC5 projections revealed an increase in annual mean temperature in the range of 0.7–0.9 °C, 1.2–2.0 °C and 1.1–3.1 °C during the 2020s, 2050s, and 2080s, respectively. Rainfall is likely to increase in the range of 0.4–9.1% and 5.7–15.3% during the 2050s and 2080s, respectively. Simulation results indicated 3.8–29% and 12–48% increase in mean annual surface runoff during the 2050s and 2080s, respectively. Similarly, an increase of 0.2–3.0%, 2.6–4.2% and 3.5–6.2% in mean annual evapotranspiration is likely during the 2020s, 2050s and 2080s, respectively. These results could be used for developing suitable climate change adaptation plans for the river basin.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 98
Author(s):  
Mekonnen H. Daba ◽  
Songcai You

The Awash River Basin is the most irrigated area in Ethiopia, which is facing critical water resources problems. The main objective of this study was to assess the impacts of climate change on river flows in the upper Awash Subbasin, Ethiopia, using the soil and water assessment tool (SWAT) hydrological model. The ensemble of two global climate models (CSIRO-Mk3-6-0 and MIROC-ESM-CHEM with RCP4.5 and RCP8.5) for climate data projections (the 2020s, 2050s, and 2080s) and historical climate data from 1981–2010 was considered. Bias-corrections were made for both the GCM data. SWAT model was calibrated and validated to simulate future hydrologic variables in response to changes in rainfall and temperature. The results showed that the projected climate change scenarios were an increase in rainfall for the period of the 2020s but reduced for the periods of 2050s and 2080s. The annual mean temperature increases, ranging from 0.5 to 0.9 °C under RCP4.5 and 0.6 to 1.2 °C under RCP8.5 for all time slices. In the 2020s, annual mean rainfall increases by 5.77% under RCP4.5 and 7.80% under RCP8.5, while in 2050s and 2080s time slices, rainfall decrements range from 3.31 to 9.87% under RCP4.5 and 6.80 to 16.22% under RCP8.5. The change in rainfall and temperature probably leads to increases in the annual streamflow by 5.79% for RCP4.5 and 7.20% for RCP8.5 in the 2020s, whereas decreases by 10.39% and 11.45% under RCP4.5; and 10.79% and −12.38% for RCP8.5 in 2050s and 2080s, respectively. Similarly, in the 2020s, an increment of annual runoff was 10.73% for RCP4.5 and 12.08% for RCP8.5. Runoff reduces by 12.03% and 4.12% under RCP4.5; and 12.65% and 5.31% under RCP8.5 in the 2050s and the 2080s, respectively. Overall, the results revealed that changes in rainfall and temperature would have significant impacts on the streamflow and surface runoff, causing a possible reduction in the total water availability in the subbasin. This study provides useful information for future water resource planning and management in the face of climate change in the upper Awash River basin.


2016 ◽  
Vol 9 (1) ◽  
pp. 28-44 ◽  
Author(s):  
A. Khadka ◽  
L.P. Devkota ◽  
R.B. Kayastha

Koshi river basin which is one of the largest river basins of Nepal has its headwaters in the northern Himalayan region of the country covered with perennial snow and glaciers. Increased warming due to climate change is most likely to impact snowpack of this Himalayan region. Snowmelt Runoff Model, a degree day based method, was used in this study to assess the snowmelt hydrology of the five sub-basins, viz. Tamor, Arun, Dudhkoshi, Tamakoshi and Sunkoshi of the Koshi river basin, with and without climate change impacts. The model has been fairly able to simulate the flow. Daily bias-corrected RCM data of PRECIS-ECHAM05 and PRECIS-HadCM3 for the period of 2041-2060 were used for future projection. A period of 2000-2008 was set as baseline period to evaluate changes in future flow. In climate change scenarios, magnitude and frequency of peak flows are expected to increase and snowmelt contribution to total river flows are likely to be more. Simulated flow results indicate that the annual flow would still be governed by monsoon flow even in the future under the climate change impact. A high probability of having more flows and snowmelt in 50’s decade than that in 40’s decade is seen. The estimated future flow by ECHAM05 is found more than those estimated by HadCM3 both seasonally and annually.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.28-44


Sign in / Sign up

Export Citation Format

Share Document