The timing of spring warming shapes reproductive effort in a warm-water fish: the role of mismatches between hepatic and gonadal processes

Author(s):  
Timothy J. Fernandes ◽  
Brian J. Shuter ◽  
Peter E Ihssen ◽  
Bailey C. McMeans

Spring-spawning fishes native to northern environments rely on both increasing temperature and lengthening photoperiod to cue reproduction and may thus be particularly sensitive to rapid warming earlier in the year while day lengths remain short. We investigated the reproductive response of pumpkinseed sunfish Lepomis gibbosus to spring warming commencing at a range of day lengths (9 – 15 hours), corresponding to various calendar days (January 10 – May 22). In both the laboratory and field, both male and female fish that experienced early warming while day lengths were <11 hours: 1) failed to initiate reproductive preparation in the liver before gonad development began, and 2) had reduced reproductive allocation. Analysis of published data on temperate fishes suggested that liver development prior to gonad development is widespread across warm-, cool-, and cold-water thermal guilds, though the precise phenology of liver relative to gonad development appears to vary widely among species. Together, our results point toward dampened reproductive preparation as a novel mechanism mediating reduced reproductive output in both warm- and cool-water fish following earlier spring warming.

2018 ◽  
Author(s):  
Yunqian Qiao ◽  
Jiao Wang ◽  
He Wang ◽  
Baozhong Chai ◽  
Chufeng Rao ◽  
...  

AbstractAeromonas salmonicidasubsp.salmonicida(A.s.s) is a major pathogen affecting fisheries worldwide. It is a well-known member of the pigmentedAeromonasspecies, which produces melanin at ≤ 22 °C. However, melanogenesis decreases as the culture temperature increases and is completely suppressed at 30-35 °C while bacterial growth is not affected. The mechanism and biological significance of this temperature-dependent melanogenesis are not clear. Heterologous expression of anA.s.s.4-hydroxyphenylpyruvate dioxygenase (HppD), the most crucial enzyme in the HGA-melanin synthesis pathway, results in thermosensitive pigmentation inEscherichia coli, suggesting that HppD plays a key role in this process. In the current study, we demonstrated that the extreme thermolability of HppD is responsible for the temperature-dependent melanization ofA.s.s.Substitutions in three residues, Ser18, Pro103, or Leu119 of HppD fromA.s.sincreases the thermolability of this enzyme and results in temperature-independent melanogenesis. Moreover, replacing the corresponding residues of HppD fromAeromonasmedia strain WS, which forms pigment independent of temperature, with those ofA.s.sHppD leads to thermosensitive melanogenesis. Structural analysis suggested that mutations at these sites, especially at position P103, can strengthen the secondary structure of HppD and greatly improve its thermal stability. In addition, we found that HppD sequences of allA.s.sisolates are identical and that two of the three residues are completely conserved withinA.s.sisolates, which clearly distinguishes these from otherAeromonasstrains. We suggest that this property represents an adaptive strategy to the psychrophilic lifestyle ofA.s.s.ImportanceAeromonas salmonicidasubsp.salmonicida(A.s.s) is the causative agent of furunculosis, a bacterial septicemia of cold water fish of theSalmonidaefamily. As it has a well-defined host range,A.s.shas become an ideal model to investigate the co-evolution of host and pathogen. For many pathogens, melanin production is associated with virulence. Although other species ofAeromonascan produce melanin,A.s.sis the only member of this genus that has been reported to exhibit temperature-dependent melanization. Here we demonstrate that thermosensitive melanogenesis inA.s.sstrains is due to the thermolability of 4-hydroxyphenylpyruvate dioxygenase (HppD). The strictly conservedhppDsequences amongA.s.sand the exclusive thermosensitive pigmentation of these strains might provide insight into the role of melanin in the adaptation to a particular host, and offer a novel molecular marker to readily differentiateA.s.sstrains from otherA. salmonicidasubspecies andAeromonasspecies.


2015 ◽  
Vol 93 (3) ◽  
pp. 207-212 ◽  
Author(s):  
Loren Merrill ◽  
Peter M. Collins

We examined the relative investment in somatic, gonadal, and liver growth, as well as a measure of immune function, in a marine species of fish (cabezon, Scorpaenichthys marmoratus (Ayres, 1854)) reared under different ambient temperature regimes (mean temperatures: 14.8 °C in Santa Barbara and 12.7 °C in Cayucos; both in California, USA). We predicted that fish reared in colder water would exhibit more pronounced trade-offs among growth, development, and immune parameters than fish in warmer water, and that females would have more pronounced trade-offs than males due to increased energy requirements for ovary development. We found immune function and liver investment were positively related in cold-water fish, but unrelated in warmer water fish. Immune function positively covaried with gonadal investment, but was not associated with somatic investment. Gonadal investment was negatively related to somatic investment, but this was driven by females, as there was no relationship between gonad development and somatic growth in males. We also found that the sexes differed in the relationship between gonadal and liver investments, in which females again exhibited a negative association but males exhibited a positive association. These results indicate that developmental investment strategies in cabezon are flexible and may be both context-specific and sex-specific.


1992 ◽  
Vol 57 (10) ◽  
pp. 2012-2020
Author(s):  
Vladimír Hejtmánek

The role of geometric factor in the course of skeletal reactions (isomerization, hydrogenolysis) of 2-methylpentane on stepped (119), (557) and reconstructed R(557) surfaces of single crystals of platinum was evaluated with computer designed models. These calculations were compared with reported experimental data. It was found by analysis of geometric conditions that there are accessible active ensembles on double step of the reconstructed R(557) surface. In addition, these active sites are unsaturated in their coordination sphere and thus catalytically effective. This finding is consistent with published data, confirming higher catalytic activity of this surface. The various pathways of Bond Shift isomerization mechanism of 2-methylpentane from the point of view of steric demands of surface intermediates on differently located ensembles are discussed, too.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 639
Author(s):  
Domenico Ribatti ◽  
Francesco Pezzella

Angiogenesis is a crucial event in the physiological processes of embryogenesis and wound healing. During malignant transformation, dysregulation of angiogenesis leads to the formation of a vascular network of tumor-associated capillaries promoting survival and proliferation of the tumor cells. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. Over this period numerous authors published data of vascularization of tumors, which attributed the cause of neo-vascularization to various factors including inflammation, release of angiogenic cytokines, vasodilatation, and increased tumor metabolism. More recently, it has been demonstrated that tumor vasculature is not necessarily derived by endothelial cell proliferation and sprouting of new capillaries, but alternative vascularization mechanisms have been described, namely vascular co-option and vasculogenic mimicry. In this article, we have analyzed the mechanisms involved in tumor vascularization in association with classical angiogenesis, including post-natal vasculogenesis, intussusceptive microvascular growth, vascular co-option, and vasculogenic mimicry. We have also discussed the role of these alternative mechanism in resistance to anti-angiogenic therapy and potential therapeutic approaches to overcome resistance.


2021 ◽  
pp. 152692482110028
Author(s):  
Alberto Ferrarese ◽  
Patrizia Burra

Liver transplantation is considered an effective therapeutic option for Wilson’s disease (WD) patients with hepatic phenotype, since it removes the inherited defects of copper metabolism, and is associated with excellent graft and patient outcomes. The role of liver transplantation in WD patients with mixed hepatic and neuropsychiatric phenotype has remained controversial over time, mainly because of high post-operative complications, reduced survival and a variable, unpredictable rate of neurological improvement. This article critically discusses the recently published data in this field, focussing in more detail on isolated neuropsychiatric phenotype as a potential indication for liver transplantation in WD patients.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
Vol 10 (5) ◽  
pp. 1147
Author(s):  
Amit Akirov ◽  
Hiba Masri-Iraqi ◽  
Idit Dotan ◽  
Ilan Shimon

Background: The diagnosis of acromegaly still poses a clinical challenge, and prolonged diagnostic delay is common. The most important assays for the biochemical diagnosis and management of acromegaly are growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Objective: Discuss the role of IGF-1, basal serum GH, and nadir GH after oral glucose tolerance test (OGTT) for the diagnosis, management, and treatment of patients with acromegaly. Methods: We performed a narrative review of the published data on the biochemical diagnosis and monitoring of acromegaly. An English-language search for relevant studies was conducted on PubMed from inception to 1 January 2021. The reference lists of relevant studies were also reviewed. Results: Serum IGF-1 levels, basal GH values, and nadir GH after OGTT play a major role in the diagnosis, management, and treatment of patients with acromegaly. Measurement of IGF-1 levels is the key factor in the diagnosis and monitoring of acromegaly, but basal and nadir GH following OGTT are also important. However, several factors may significantly influence the concentrations of these hormones, including assay methods, physiologic and pathologic factors. In some cases, discordant GH and IGF-1 levels may be challenging and usually requires additional data and monitoring. Conclusion: New GH and IGF-1 standards are much more precise and provide more accurate tools to diagnose and monitor patients with acromegaly. However, all these biochemical tools have their limitations, and these should be taken under consideration, along with the history, clinical features and imaging studies, when assessing patients for acromegaly.


2001 ◽  
Vol 85 (04) ◽  
pp. 626-633 ◽  
Author(s):  
Augusto Di Castelnuovo ◽  
Giovanni de Gaetano ◽  
Maria Benedetta Donati ◽  
Licia Iacoviello

SummaryMembrane glycoprotein IIb/IIIa plays a major role in platelet function. The gene encoding the glycoprotein IIIa shows a common polymorphism PlA1/PlA2 that was variably associated with vascular disease. To clarify the role of PlA1/PlA2 polymorphism in coronary risk, a meta-analysis of published data was conducted. Studies were identified both by MEDLINE searches, and hand searching of journals and abstract books.A total of 34 studies for coronary artery disease (CAD), and 6 for restenosis after revascularization were identified, for a total of 9,095 cases and 12,508 controls. In CAD, the overall odds ratio for carriers of the PlA2 allele was 1.10 (95% CI: 1.03 to 1.18), and it was 1.21 (95% CI: 1.05 to 1.38) in subjects younger than 60. Overall odds ratio was 1.31 (95% CI: 1.10 to 1.56) after revascularization procedures.The association of PlA2 status with overall cardiovascular disease in the general population is significant but weak; higher risk has been identified in less heterogeneous subgroups as in the younger cohorts and in the restenosis subset with stents.


Sign in / Sign up

Export Citation Format

Share Document