Effects of overtopping on growth of white spruce in Alaska

2013 ◽  
Vol 43 (9) ◽  
pp. 861-871 ◽  
Author(s):  
E.C. Cole ◽  
M. Newton ◽  
A. Youngblood

Early establishment of competing vegetation often presents an obstacle to the success of planted white spruce (Picea glauca (Moench) Voss) seedlings. We followed growth and development of white spruce and associated vegetation for up to 17 years in Alaska’s boreal forests to quantify roles of overtopping plant cover in suppressing conifers. The three study areas represented a range of site conditions of varying productivity and species of competing cover, different site preparation and release treatments, and different bare-root and container white spruce stock types. Herbaceous overtopping peaked early after planting and decreased as white spruce were able to outgrow competitors. Overtopping by shrubs and hardwoods, especially aspen (Populus tremuloides Michx.) and resin birch (Betula neoalaskana Sarg.) peaked somewhat later than herbaceous overtopping and decreased over time for most sites and treatments. In a model that combined all sites, vegetation management treatments, and years, overtopping and previous year’s volume explained approximately 85% of the variation in volume growth. Increasing the size of planting stock helped reduce overtopping, hence suppression, even in treatments dominated by hardwood species. Results suggested that control of overtopping was essential for maximum growth and long-term or increasing levels of overtopping severely suppressed white spruce seedling growth.

2011 ◽  
Vol 41 (4) ◽  
pp. 793-809 ◽  
Author(s):  
Andrew Youngblood ◽  
Elizabeth Cole ◽  
Michael Newton

To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete installations differed in time since disturbance: “new” units were harvested immediately before spring planting and “old” units were harvested at least 3 years before planting. We compared mechanical scarification before planting, broadcast herbicide application during the fall before planting, and no site preparation with 1-year-old container-grown seedlings from two sources, 2-year-old bare-root transplants from two sources, and 3-year-old bare-root transplants. Seedlings were followed for 11 years on most sites. Based on meta-analyses, seedling survival increased 10% with herbicide application and 15% with mechanical scarification compared with no site preparation. Scarification and herbicide application increased seedling height by about 28% and 35%, respectively, and increased seedling volume by about 86% and 195%, respectively, compared with no site preparation. Soil temperature did not differ among site preparation methods after the first 7 years. Results suggest that white spruce stands may be successfully restored through a combination of vegetation control and use of quality planting stock.


2010 ◽  
Vol 40 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Jonathan Martin-DeMoor ◽  
Victor J. Lieffers ◽  
S. Ellen Macdonald

In some boreal forests sites, there are considerable amounts of natural regeneration of white spruce ( Picea glauca (Moench) Voss) after logging, even without silvicultural treatments to encourage establishment. We assessed the factors controlling the amount of this regeneration 8–15 years postharvest on previously aspen-dominated ( Populus tremuloides Michx.) boreal mixedwood sites. We surveyed 162 transects across 81 cutovers, exploring the effects of mast years, season of harvest, distribution of seed trees, weather conditions around the time of harvest, and abundance of grass or woody vegetation on white spruce regeneration. Substantial amounts of naturally regenerated white spruce were found; however, sites with no seed trees had virtually no spruce regeneration. Average stocking was 7% (percentage of 9 m2 plots along a transect across a cutover that had at least one seedling), ranging from 0% to 62%. Stocking levels were higher in cutblocks that had been harvested in the summer, prior to seedfall of a mast year, and where there was a seed source within 60 m. Stocking was lower when conditions were cool and wet the year before and 2 years after harvest and when the site contained extensive cover of grass or woody vegetation.


2016 ◽  
Vol 46 (10) ◽  
pp. 1205-1215 ◽  
Author(s):  
Jessica Smith ◽  
Brian D. Harvey ◽  
Ahmed Koubaa ◽  
Suzanne Brais ◽  
Marc J. Mazerolle

Mixed-species stands present a number of opportunities for and challenges to forest managers. Boreal mixedwood stands in eastern Canada are often characterized by a dominant canopy of shade-intolerant aspen (Populus tremuloides Michx.) with more shade-tolerant conifers in the mid- to sub-canopy layers. Because the aspen and conifer components often attain optimal merchantable sizes at different moments in stand development, there is an interest in developing silvicultural practices that allow partial or total removal of aspen and favour accelerated growth of residual conifers. We tested four partial harvesting treatments in mixed aspen – white spruce (Picea glauca (Moench.) Voss) stands in which different proportions of aspen (0%, 50%, 65%, and 100% basal area) were removed. Ten years after treatments, 72 spruce stems representing dominant, co-dominant, and suppressed social classes were destructively sampled for stem analysis. Using linear mixed effect models, we analyzed growth as a function of treatment intensity, time since treatment, social status, pretreatment growth rate, and neighbourhood competition. Relative to control stands, radial and volume growth responses were detected only in the extreme treatment of 100% aspen removal. In relative terms, suppressed trees showed the greatest magnitude of cumulative growth increase. Compared with control trees, average annual radial and volume increments were, respectively, 23.5% and 7.1% higher for dominant trees, 67.7% and 24.1% higher for co-dominant trees, and 115.8% and 65.6% higher for suppressed trees over the 10 years after treatment. Growth response was proportional to pretreatment growth rate, and among neighbouring trees, only coniferous neighbours had a negative effect on white spruce growth. Our results suggest that in similar mixed-stand conditions, relatively heavy removal of overstory aspen accompanied by thinning of crowded conifers would result in greatest growth response of residual spruce stems.


2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


2006 ◽  
Vol 36 (7) ◽  
pp. 1818-1833 ◽  
Author(s):  
Daniel A MacIsaac ◽  
Philip G Comeau ◽  
S Ellen Macdonald

This study assessed the dynamics of gap development in postharvest regeneration in five stands in northwestern Alberta dominated by trembling aspen (Populus tremuloides Michx.). The pattern of gap development over time was determined from analysis of air photographs taken preharvest and 1, 4, 10, and 12 years postharvest. The area of each stand covered by gaps increased after harvest because of the addition of harvest-related gaps over and above those that had been present prior to harvest. The blocks we studied had a combined gap area of up to 29% of stand area 12 years postharvest. We measured regeneration characteristics, microsite, soil, light, and browse conditions in 30 aspen regeneration gaps (gaps in regeneration that were not gaps preharvest and were not due to obvious harvest-related disturbance) 14 years following harvest. Although deciduous trees within postharvest regeneration gaps were the same age as those outside (i.e., in a fully stocked matrix of newly established even-aged aspen stems), they were often suppressed, with significantly lower density and growth. Within the 14-year-old postharvest regenerating aspen stands, aspen height varied from 1 to 11 m; this substantial variability appeared to be largely due to the influence of browsing. There was little evidence of ongoing regeneration within postharvest regeneration gaps, indicating that these gaps will probably persist over time. This may impact future deciduous stocking and volume. It is unknown what may have initiated the formation of these gaps, although results suggest that they are not due to edaphic conditions or disease in the preharvest stands. There is evidence that bluejoint (Calamagrostis canadensis (Michx.) Beauv.) cover and browsing are important factors in the maintenance of postharvest regeneration gaps. The spatial heterogeneity resulting from gaps could be advantageous, however, either as part of ecosystem-based management emulating natural disturbance or as a template for mixedwood management, where white spruce (Picea glauca (Moench) Voss) are established in gaps.


2002 ◽  
Vol 32 (6) ◽  
pp. 1071-1079 ◽  
Author(s):  
Clive Welham ◽  
Brad Seely ◽  
Hamish Kimmins

The ecosystem model FORECAST was used to simulate the yield potential in Saskatchewan mixedwoods of the two-pass harvesting system. The simulated two-pass stand consisted of an overstory population of pure trembling aspen (Populus tremuloides Michx.) with a white spruce (Picea glauca (Moench) Voss) understory. The aspen was removed at year 60, and yields of the understory spruce and resprouting aspen were simulated for 80 years thereafter. The two-pass simulations were compared with two simulated conventional harvesting systems. The first system consisted of a single final harvest at year 140. In the second system, a clearcut was conducted at year 60. White spruce was then planted in the subsequent year at 400, 600, or 800 stems/ha, and aspen also permitted to resprout. Growth was then simulated for a further 80 years. FORECAST projections indicated that the two-pass system might be effective for releasing the white spruce understory, achieving at least a twofold gain in spruce volume relative to conventional methods. Furthermore, total volumes exceeded those derived from the unmanaged stand, while second rotation yields of aspen declined with spruce understory density. These simulations suggest the two-pass harvesting system has strong potential as a tool for mixedwood management.


2002 ◽  
Vol 80 (6) ◽  
pp. 684-689 ◽  
Author(s):  
Simon M Landhäusser ◽  
Tawfik M Muhsin ◽  
Janusz J Zwiazek

Low soil temperatures, common during the growing season in northern forests, have the potential to impede plant growth. In this study, water uptake, water relations, and growth characteristics were examined in aspen (Populus tremuloides) and white spruce (Picea glauca) seedlings that were inoculated with ectomycorrhizal fungi and grown at 20°C daytime air temperatures and low soil temperatures of 4°C and 8°C. Mycorrhizal associations had little effect on root and shoot biomass at both soil temperatures. Root hydraulic conductance (Kr) was higher in both mycorrhizal plant species compared to nonmycorrhizal plants, but there was no soil temperature effect on Kr in either species. Mycorrhizae also increased shoot water potential (Ψw) in Populus tremuloides but had no effect on Ψw in Picea glauca. The increases in Kr and Ψw were not reflected by changes in stomatal conductance (gs) and transpiration rates (E), suggesting that the reduction of water flow in seedlings exposed to low soil temperature was not likely the factor limiting gs in both plant species.Key words: boreal forest, root hydraulic conductance, root growth, stomatal conductance, water uptake.


Sign in / Sign up

Export Citation Format

Share Document