Bending properties and strength grading of Norway spruce: variation within and between stands

2014 ◽  
Vol 44 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Olav Høibø ◽  
Geir I. Vestøl ◽  
Carolin Fischer ◽  
Ludvig Fjeld ◽  
Audun Øvrum

Current strength grading of Norway spruce (Picea abies (L.) Karst.) structural timber is only able to describe parts of the great variability in density and bending properties. This study assesses whether information about the origin of the timber can be used to predict its strength and stiffness, alone or in combination with machine strength grading. Three hundred and seventy-three boards from 45 trees sampled from three stands in eastern Norway were studied. Substantial parts of the variability of density, modulus of elasticity (MOE), and bending strength or modulus of rupture (MOR) of the boards studied were explained by origin (differences between sites, relative tree size (diameter at breast height), and longitudinal position in stem). Origin also gave a reduction in residual variance in addition to what was obtained by machine grading based on resonance frequencies. For MOR, the improvement was larger than what was obtained by adding density, whereas for MOE, the density was more important than information about origin.

2016 ◽  
Vol 46 (7) ◽  
pp. 978-985 ◽  
Author(s):  
Carolin Fischer ◽  
Geir I. Vestøl ◽  
Olav Høibø

Density, modulus of elasticity (MOE), and bending strength (MOR) are important properties of structural timber, and knowledge about the variability of these properties is important to make efficient use of the timber. To utilize such information in the production of structural timber, the information must be available before sawing. This study presents models describing the variability of density and bending properties of Norway spruce (Picea abies L. Karst) boards within individual trees, as well as among trees and stands, based on geographical data and forest inventory data including external tree measurements. The models were based on 1551 boards from 17 sites in Southern Norway, Eastern Norway, and Trøndelag. Important variables describing variation in density, MOE, and MOR between sites were site index and elevation. For density, latitude gave additional information. Age, diameter at breast height, and longitudinal position within the tree were the most important variables at the tree level. The models explained major parts of the site variance of all properties, and for MOR, they explained a substantial part of the variance due to trees. In addition to being used for predicting the properties of structural timber from current forest resources, the models also provide information that can be used to predict the effects of silviculture on timber properties in future forest stands.


2013 ◽  
Vol 744 ◽  
pp. 366-369
Author(s):  
Juan Wei ◽  
Dan Zeng ◽  
Ming Jie Guan

In this paper, the bending properties of bamboo-wood container flooring and bamboo curtain-OSB container flooring were tested and the six-cycle artificial accelerated aging method of ASTM D1037 was conducted to evaluate the aging performance of two kinds of bamboo-wood container floorings. The modulus of rupture (MOR) and modulus of elasticity (MOE) were tested in the longitudinal and transverse directions before and after aging. The results showed that both the bending strength and MOE decreased after aging. The retention ratios of MOR of the bamboo-wood container flooring and bamboo curtain-OSB container flooring were respectively 43.5%, 72.0%, and the retention ratios of MOE were 54.6%, 76.3%. In general, the effect of aging on the bamboo-wood container flooring was larger than that on the bamboo curtain-OSB container flooring.


2020 ◽  
Vol 70 (3) ◽  
pp. 275-278
Author(s):  
Guangmei Cao Anderson ◽  
Frank C. Owens ◽  
Frederico Franca ◽  
Robert J. Ross ◽  
Rubin Shmulsky

Abstract Metriguard's grain angle meter (Model 511) measures grain angle in wood by assessing permittivity. This study evaluates the correlations between grain angle meter readings and bending properties of 1,400 kiln-dried 2 by 4 specimens of southern pine (Pinus spp.) lumber and considers its utility for providing supplementary data for predicting the strength of lumber. The results showed that in mill-run lumber, the correlation between grain angle and modulus of rupture (MOR) was −0.420. In addition, in graded lumber, the correlation between grain angle and MOR got progressively stronger as the grade went down. With a few technical modifications, applying this device in a mill production setting could prove useful for supplementing other nondestructive methods for assessing bending strength in lumber.


BioResources ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. 3104-3112 ◽  
Author(s):  
Bekir Cihad Bal ◽  
İbrahim Bektaş

In this study, the bending strength and stiffness of laminated veneer lumber (LVL) produced from beech (Fagus orientalis L.), poplar (Populus x euramericana I-214), and eucalyptus (Eucalyptus grandis W. Hill ex Maiden) wood using urea formaldehyde (UF), melamine urea formaldehyde (MUF), and phenol formaldehyde (PF) adhesives were determined. The tests were conducted in the flatwise and edgewise directions. The modulus of rupture (MOR), modulus of elasticity (MOE), specific modulus of rupture (SMOR), and specific modulus of elasticity (SMOE) were calculated. Variance analysis of the bending properties indicated that the effects of the species of tree, the direction of the load, and the type of adhesive were statistically significant. However, according to variance analysis of the SMOR, the effects of the type of adhesive were not significant. The results showed that the type of adhesive did not influence the bending properties of laminated veneer lumber. It can be stated that the differences among groups were due to differences in their densities. The direction of the load and the species of the tree had significant effects on the bending properties.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Murzabyek Sarkhad ◽  
Futoshi Ishiguri ◽  
Ikumi Nezu ◽  
Bayasaa Tumenjargal ◽  
Yusuke Takahashi ◽  
...  

Abstract The quality of dimension lumber (2 by 4 lumber) was preliminarily investigated in four common Mongolian softwoods: Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. to produce high quality dimension lumber for structural use. In total 61, 39, 67, and 37 pieces of lumber were prepared for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. The lumber was visually graded and then tested in static bending to obtain the 5% lower tolerance limits at 75% confidence level (f0.05) of the modulus of elasticity (MOE) and the modulus of rupture (MOR). In addition, the effects of sawing patterns on bending properties were also analyzed. The f0.05 of the MOE and MOR were 4.75 GPa and 15.6 MPa, 3.39 GPa and 11.0 MPa, 3.78 GPa and 11.7 MPa, and 6.07 GPa and 22.3 MPa for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. These results suggested that with a few exceptions, characteristic values of MOR in the four common Mongolian softwoods resembled those in similar commercial species already used. In visual grading, over 80% of total lumber was assigned to select structural and No. 1 grades in Pinus sylvestris and Pinus sibirica, whereas approximately 40% of total lumber in L. sibirica was No. 3 and out of grades. Sawing patterns affected bending properties in Pinus sylvestris and L. sibirica, but did not affect Pinus sibirica and Picea obovata. Dynamic Young's modulus was significantly correlated with bending properties of dimension lumber for the four species. Based on the results, it was concluded that dimension lumber for structural use can be produced from the four common Mongolian softwoods.


2012 ◽  
Vol 184-185 ◽  
pp. 1163-1166
Author(s):  
Xi An Xie ◽  
Gao Feng Quan

Through the four-point bending test of lath-shaped heat treated AZ31 magnesium alloy, the bending properties and damage characteristics were explored. The results show that the optimal bending strength of the magnesium alloy were 355.1MPa and 259.2MPa for extruded and cast samples, respectively, after corresponding heat treatment with 350°C, 90min and 400°C, 30min. The initial cracks both occurred at the loading point after applied load exceeded the yield limit of AZ31 magnesium alloy. Surface bump, cracks and other damage morphology accompanied by a large number of twinning organizations were found on the surface of the samples.


1995 ◽  
Vol 71 (4) ◽  
pp. 473-478
Author(s):  
Y. H. Chui

Norway spruce [Picea abies (L.) Karst.] is one of the major non-native softwood species in the Maritimes. A project was undertaken to evaluate the grade yields and mechanical properties of Norway spruce. The project also provided comparative information on the wood quality of two Norway spruce provenances from Germany and Poland. Four plantations were selected for the study with two of these plantations containing trees of known provenances. One plantation was mature and the other three were juvenile. In total, 530 pieces of lumber and the same number of matched small clear specimens were tested for bending properties. Prior to testing, the lumber was visually graded according to both British and Canadian specifications. Quality of lumber varied significantly between sites. Lumber from the Polish provenance had slightly better mechanical properties than that from trees of the German provenance. Compared with published information, the plantation-grown Norway spruce had lower clear wood bending properties and specific gravity than primary eastern Canadian spruce species and balsam fir, and natural Norway spruce grown in Europe. Key words: Norway spruce [Picea abies (L.) Karst.], wood quality, bending properties, grade yield


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2716
Author(s):  
Hoang Anh Tuan ◽  
Shinji Hirai ◽  
Shota Inoue ◽  
Alharbi A. H. Mohammed ◽  
Shota Akioka ◽  
...  

This research reports the processability and mechanical properties of silk resins prepared by hot-pressing followed by hot-rolling and then analyzes their thermal and structural properties. The results show that regenerated silk (RS) resins are better suited for hot-rolling than Eri and Bombyx mori silk resins (untreated silk). When hot-rolling at 160 °C with a 50% of reduction ratio, maximum bending strength and Young’s modulus of RS resin reaches 192 MPa and 10.2 GPa, respectively, after pretreatment by immersion in 40 vol% ethanol, and 229 MPa and 12.5 GPa, respectively, after pretreatment by immersion in boiling water. Increased strength of the material is attributed to the increased content of aggregated strands and intramolecular linking of β sheets (attenuated total reflectance Fourier-transform infrared spectroscopy) and higher crystallinity (X-ray diffraction analysis). After hot-pressing and hot-rolling, RS resins have a stable decomposition temperature (297 °C).


2020 ◽  
Vol 15 ◽  
pp. 155892502091558
Author(s):  
Xiaoping Gao ◽  
Xiaori Yang ◽  
Xianyan Wu ◽  
Pibo Ma

An experimental study of bending properties of composites reinforced with triaxial and quadaxial warp-knitted glass fabrics was carried out in the 0°, 45°, and 90° directions at −30°C, 0°C, 20°C, and 40°C, respectively. The relationships between the stress–strain curves, bending strength, bending modulus, and temperature were obtained. The failure mechanisms at different temperatures were also analyzed based on the fracture morphologies and scanning electron microscope (SEM) images. The results indicated that the bending properties decrease slightly with the increase in temperature from −30°C to 20°C and decrease dramatically from 20°C to 40°C. The ultimate bending strength of triaxial and quadaxial warp-knitted composites decreases approximately 31.34% and 34.29%, respectively. In particular, the relationships between bending strength and temperature were also obtained by nonlinear fitting with the experimental data, which could be used to predict the bending behavior at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document