Multi-objective and multi-period optimization of a regional timber supply network with uncertainty

2020 ◽  
Vol 50 (2) ◽  
pp. 203-214 ◽  
Author(s):  
Cheng Chen ◽  
Jianbang Gan ◽  
Zhengxiong Zhang ◽  
Rongzu Qiu

To assess the impacts of uncertainty and environmental objectives on the configuration of timber supply networks, we develop a generic multi-period, mixed-integer fuzzy linear programming model with demand uncertainty and two objectives of minimizing total transportation cost and greenhouse gas (GHG) emissions. We then use the triangular fuzzy number method to define the uncertain demands and convert the model into its equivalent auxiliary crisp counterpart. To derive Pareto solutions more efficiently, we propose the nondominated sorting genetic algorithm (NSGA-II) to solve the model. Finally, we apply the model framework and solution method to a real-world case of regional timber supply in Fujian, China, to demonstrate their applicability. The simulation results of the model show that trade-offs exist between total cost and GHG emissions and that the proper selection of the number and locations of distribution centers can help reduce both the cost and GHG emissions. Demand uncertainty and supply fluctuations across different time periods can increase the cost and GHG emissions. Our empirical results provide useful insights into the design and management of regional timber supply networks, and our generic model is applicable to the analysis of regional supply networks of other products or materials besides timber.

2019 ◽  
Vol 11 (15) ◽  
pp. 4248 ◽  
Author(s):  
Jinghua Li ◽  
Hui Guo ◽  
Qinghua Zhou ◽  
Boxin Yang

Timeliness of steel distribution centers can effectively ensure the smooth progress of ship construction, but the carbon emissions of vehicles in the distribution process are also a major source of pollution. Therefore, when considering the common cost of vehicle distribution, taking the carbon emissions of vehicles into account, this paper establishes a Mixed Integer Linear Programming (MILP) model called green vehicle routing and scheduling problem with simultaneous pickups and deliveries and time windows (GVRSP-SPDTW). An intelligent water drop algorithm is designed and improved, and compared with the genetic algorithm and traditional intelligent water drop algorithm. The applicability of the improved intelligent water drop algorithm is proven. Finally, it is applied to a specific example to prove that the improved intelligent water drop algorithm can effectively reduce the cost of such problems, thereby reducing the carbon emissions of vehicles in the distribution process, achieving the goals of reducing environmental pollution and green shipbuilding.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jafaru Musa Egieya ◽  
Lidija Čuček ◽  
Klavdija Zirngast ◽  
Adeniyi Jide Isafiade ◽  
Zdravko Kravanja

AbstractThis contribution presents an hourly-based optimization of a biogas supply network to generate electricity, heat and organic fertilizer while considering multiple objectives and auction trading prices of electricity. The optimization model is formulated as a mixed-integer linear programming (MILP) utilizing a four-layer biogas supply chain. The model accounts for biogas plants based on two capacity levels of methane to produce on average 1 ± 0.1 MW and 5 ± 0.2 MW electricity. Three objectives are put forward: i) maximization of economic profit, ii) maximization of economic profit while considering cost/benefits from greenhouse gas (GHG) emissions (economic+GHG profit) and iii) maximization of sustainability profit. The results show that the economic profit accrued on hourly-based auction trading prices is negative (loss), hence, four additional scenarios are put forward: i) a scenario whereby carbon prices are steadily increased to the prevalent eco-costs/eco-benefits of global warming; ii) a scenario whereby all the electricity auction trading prices are multiplied by certain factors to find the profitability breakeven factor, iii) a scenario whereby shorter time periods are applied, and investment cost of biogas storage is reduced showing a relationship between cost, volume of biogas stored and the variations in electricity production and (iv) a scenario whereby the capacity of the biogas plant is varied from 1 MW and 5 MW as it affects economics of the process. The models are applied to an illustrative case study of agricultural biogas plants in Slovenia where a maximum of three biogas plants could be selected. The results hence present the effects of the simultaneous relationship of economic profit, economic+GHG profit and sustainability profit on the supply and its benefit to decision-making.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 101
Author(s):  
Belmiro P. M. Duarte ◽  
André M. M. Gonçalves ◽  
Lino O. Santos

The problem of finding optimal production and inventory policies is crucial for companies of the food industry, especially those processing multiple products. Since companies are required to adopt the most efficient solutions to prosper, the operation at these optimal conditions can have an extensive impact on profit, resource allocation and product quality. We address the problem of finding the optimal production and inventory policy in a multiproduct bakery unit for two contexts: (i) deterministic consumption without inventory control; and (ii) stochastic consumption combined with delayed inventory control. A formulation is proposed for each of these two setups. The restrictions considered in the model framework are related to workforce availability, and the cost structure includes four components: (i) production cost; (ii) inventory cost; (iii) setup cost; and (iv) the cost due to the degradation of perceived quality. The problem is formulated as a Mixed Integer Linear Programming one and solved with a branch and cut algorithm-based solver. The formulation is applied to a real bakery unit producing a mix of eight products. Distinct demand and inventory lower levels are used for building scenarios to test both models and characterize the economic performance of the multiproduct bakery unit.


Author(s):  
DAVID PEIDRO ◽  
JOSEFA MULA ◽  
RAÚL POLER

A new fuzzy mathematical programming model for supply chain planning under supply, process and demand uncertainty is proposed in this paper. A tactical supply chain planning problem has been formulated as a fuzzy mixed integer linear programming model where data are ill-known and modeled by fuzzy numbers with modified s-curve membership functions. The fuzzy model provides alternative decision plans to the decision maker (DM) for different degrees of satisfaction. Finally, the proposed model is tested by using data from a real automobile supply chain.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 937
Author(s):  
Fady M. A. Hassouna ◽  
Mahmoud Assad ◽  
Islam Koa ◽  
Wesam Rabaya ◽  
Aya Aqhash ◽  
...  

Over the last three decades, transportation has become one of the main energy-consuming sectors around the world and, as a result, large amounts of emissions are produced, contributing to global warming, climate change, and health problems. Therefore, huge investments and efforts have been made by governments and international institutions to find new renewable and clean sources of energy. As a contribution to these efforts, this study determined the practical energy and environmental implications of replacing conventional speed humps with energy-harvesting speed humps in Nablus city, Palestine. The study was implemented using an energy-harvesting speed hump (EHSH) system developed in the laboratories at An-Najah National University and based on comprehensive traffic volume counts at all speed humps’ locations. In addition, a traffic volume prediction model was developed in order to determine the implications over the next 10 years. As a result of the study, the expected annual amount of generated energy was determined. Moreover, the expected reduction in greenhouse gas (GHG) emissions and the reduction in the cost of roadway network lighting were determined based on the current and future traffic conditions.


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


2021 ◽  
Vol 13 (14) ◽  
pp. 7708
Author(s):  
Yiping Huang ◽  
Qin Yang ◽  
Jinfeng Liu ◽  
Xiao Li ◽  
Jie Zhang

In order to reduce the energy consumption of furnaces and save costs in the product delivery time, the focus of this paper is to discuss the uncertainty of demand in the rolling horizon and to globally optimize the sustainability of the production in the aluminum furnace hot rolling section in environmental and economic dimensions. First, the triples α/β/γ are used to describe the production scheduling in the aluminum furnace hot rolling section as the scheduling of flexible flow shop, satisfied to constraints of demand uncertainty, operation logic, operation time, capacity and demand, objectives of minimizing the residence time of the ingot in the furnace and minimizing the makespan. Second, on the basis of describing the uncertainty of demand in rolling horizon with the scenario tree, a multi-objective mixed integer linear programming (MILP) optimization model for sustainable production in the aluminum furnace hot rolling section is formulated. Finally, an aluminum alloy manufacturer is taken as an example to illustrate the proposed model. The computational results show that when the objective weight combination takes the value of α=0.7, β=0.3, the sustainability indicators of the environmental and economic dimensions can be optimized to the maximum extent possible at the same time. Increasingly, managerial suggestions associated with the trade-off between environmental and economic dimensions are presented. Scheduling in the rolling horizon can optimize the production process of the aluminum furnace hot rolling section globally, indicating that it is more conducive to the sustainable development of the environment and economic dimensions than scheduling in a single decision time period.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anton Ochoa Bique ◽  
Leonardo K. K. Maia ◽  
Ignacio E. Grossmann ◽  
Edwin Zondervan

Abstract A strategy for the design of a hydrogen supply chain (HSC) network in Germany incorporating the uncertainty in the hydrogen demand is proposed. Based on univariate sensitivity analysis, uncertainty in hydrogen demand has a very strong impact on the overall system costs. Therefore we consider a scenario tree for a stochastic mixed integer linear programming model that incorporates the uncertainty in the hydrogen demand. The model consists of two configurations, which are analyzed and compared to each other according to production types: water electrolysis versus steam methane reforming. Each configuration has a cost minimization target. The concept of value of stochastic solution (VSS) is used to evaluate the stochastic optimization results and compare them to their deterministic counterpart. The VSS of each configuration shows significant benefits of a stochastic optimization approach for the model presented in this study, corresponding up to 26% of infrastructure investments savings.


Sign in / Sign up

Export Citation Format

Share Document