Root physiological responses can explain the effects of short-term plant-plant interactions on growth of two subalpine coniferous species

Author(s):  
Xuefeng Hu ◽  
Wanting Li ◽  
Qinghua Liu ◽  
Chunying Yin

Root functional traits play an important role in nutrient acquisition of plants, affecting the outcome of plant-plant interactions. However, few studies have comprehensively investigated the plastic responses of plant root traits to plant-plant interactions. A pot experiment was conducted to quantify the effects of intraspecific and interspecific interactions on seedlings growth and multiple root traits of two coniferous species, Picea asperata and Abies faxoniana. The results showed that plant-plant interactions changed root physiology of two species but did not affect their root system, morphological, architectural and biotic traits. Intraspecific interaction resulted in lower root N content and stronger resource competition than under interspecific interaction. Under intraspecific interaction, P. asperata had lower root vigor and nitrate reductase activity, which impeded the acquisition and utilization of the limited resources, and thus resulted in marginally decreased total biomass; while total biomass for A. faxoniana was not significantly affected. Under interspecific interaction, the high total biomass of A. faxoniana could be explained by rhizosphere interactive effects and reduced metabolic (carbon and nitrogen) costs due to lower root exudative outputs. Our results demonstrate that root physiological responses can explain the effects of short-term plant-plant interactions on plant growth.

Ecosphere ◽  
2017 ◽  
Vol 8 (8) ◽  
pp. e01915 ◽  
Author(s):  
Concepción L. Alados ◽  
Hugo Saiz ◽  
Maite Gartzia ◽  
Paloma Nuche ◽  
Juan Escós ◽  
...  

2021 ◽  
Author(s):  
Z. Homulle ◽  
T. S. George ◽  
A. J. Karley

Abstract Background The potential benefits of intercropping are manifold and have been repeatedly demonstrated. Intercropping has the potential to create more productive and resilient agroecosystems, by improving land utilisation, yield and yield stability, soil quality, and pest, disease and weed suppression. Despite these potential benefits, significant gaps remain in the understanding of ecological mechanisms that govern the outcomes when crop species are grown together. A major part of plant-plant interactions takes place belowground and these are often overlooked. Scope This review synthesises current evidence for belowground plant-plant interactions of competition, niche differentiation and facilitation, with the aim of identifying root traits that influence the processes contributing to enhanced performance of intercrops compared with monocultures. We identify a suite of potentially complementary root traits for maximising the benefits of intercropping. These traits underpin improved soil exploration, more efficient resource use, and suppression of soil-borne pathogens and pests in intercrops. Conclusion This review brings together understanding of the mechanisms underpinning interactions between intercropped roots, and how root traits and their plasticity can promote positive outcomes. Root trait ‘ideotypes’ for intercropped partners are identified that could be selected for crop improvement. We highlight the importance of examining belowground interactions and consider both spatial and temporal distribution of roots and rhizosphere mechanisms that aid complementarity through niche differentiation and facilitation. Breeding of crop ideotypes with specific beneficial root traits, combined with considerations for optimal spatio-temporal arrangement and ratios of component crops, are essential next steps to promote the adoption of intercropping as a sustainable farming practice.


Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Irene Dini ◽  
Roberta Marra ◽  
Pierpaolo Cavallo ◽  
Angela Pironti ◽  
Immacolata Sepe ◽  
...  

Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway.


2021 ◽  
pp. 127993
Author(s):  
Chun Song ◽  
Clement Kyei Sarpong ◽  
Xiaofeng Zhang ◽  
Wenjing Wang ◽  
Lingfeng Wang ◽  
...  

1993 ◽  
Vol 23 (10) ◽  
pp. 2180-2193 ◽  
Author(s):  
Pu Mou ◽  
Robert J. Mitchell ◽  
Robert H. Jones

Ecological field theory, unlike many other vegetation modeling approaches, provides a basis to construct an individually based, spatially explicit, and resource-mediated model for mechanistic simulation of plant–plant interactions and vegetation dynamics. The model REGROW has been developed, based on ecological field theory principles, to simulate vegetation dynamics for northern hardwood forests. Using data from a current study of a southern pine system to calibrate a modified version of this model, SPGROW, we simulated growth of individuals for the first growing season in stands of loblolly pine (Pinustaeda L.) and sweetgum (Liquidambarstyraciflua L.) seedlings and loblolly pine seedling–sweetgum sprout mixtures. SPGROW accurately simulated stand development at population and stand levels. However, less agreement occurred at the individual level between simulated and field survey values, possibly owing to lack of data on site heterogeneity and genetic variation. Plant interactions, which altered resource availability (light, water, and nutrients) to individual plants, played a major role in differentiating plant size in the model. Given its unique model structure and simulation accuracy, SPGROW has the potential to provide very detailed insight into the mechanisms of plant–plant interactions.


Sign in / Sign up

Export Citation Format

Share Document