Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor

2020 ◽  
Vol 66 (1) ◽  
pp. 59-70
Author(s):  
Dan Li ◽  
Xihong Liang ◽  
Zhengwei Li ◽  
Yao Jin ◽  
Rongqing Zhou ◽  
...  

In this study, we explored the effect of chemical oxygen demand (COD) load on the nitrification and microbial communities in activated sludge isolated from an aerobic nitrifying tank. The activated sludge was cultured in three different COD groups: L-COD, 200 mg/L; M-COD, 1200 mg/L; H-COD, 4200 mg/L. The results indicated that the COD exerts a negligible effect on the nitrogen removal ability within the first 24 h. However, the nitrification rate decreased with culture time; the ammonium degradation rates were found to be 80.26%, 57.56%, and 43.43% at 72 h in the three COD groups, respectively. These values correspond to decreases of 19.40%, 41.83%, and 51.48%, respectively, in relation to those observed at 24 h. The activated sludge in the different COD groups exhibited similar community compositions after 24 h, as assessed by Illumina high-throughput sequencing, while a significant difference in the relative abundances of some organisms occurred after 48 and 72 h. Proteobacteria was the main phylum, with a relative abundance of >51.45%. The genera Aridibacter, Paracoccus, Nitrospira, and Nitrosomonas were suppressed by COD load over time. This study may contribute to our knowledge about the nitrification ability and microbial communities in activated sludge at different COD load levels.

1998 ◽  
Vol 37 (4-5) ◽  
pp. 57-63 ◽  
Author(s):  
S. K. Kaiser ◽  
J. B. Guckert ◽  
D. W. Gledhill

Laboratory models of wastewater treatment plants (WWTP) provide controlled systems for studying chemical biodegradability and removal as well as WWTP microbial ecology and engineering. In this study, Continuous Activated Sludge (CAS, 3-L) and Semi-Continuous Activated Sludge (SCAS, 2.5-L) units were maintained for up to 17 weeks using feedstocks of either fresh WWTP sewage, a complex synthetic wastewater, or a simple glucose/peptone feed (SCAS only). The goal of this research was to evaluate the microbial communities of the WWTP and the CAS and SCAS units to determine which laboratory models, and which feedstocks, were able to maintain the complexity of the WWTP microbial communities in the laboratory. One endpoint evaluated in this study was microbial community metabolic profiles, as measured using Biolog MicroPlates. Biolog Microplates contain 95 different pre-dried carbon sources and a tetrazolium dye used to spectrophotometrically measure oxidation of carbon sources. The Biolog carbon source utilization patterns of the CAS communities were similar to the SCAS communities when both were fed WWTP sewage. In addition, the profiles for these laboratory models remained similar to the WWTP microbial communities, even over an extended cultivation time (16 weeks) in the CAS systems. Amendment with a complex synthetic wastewater (25% by chemical oxygen demand) did not affect microbial metabolic response in the CAS systems, but amendment (100% by chemical oxygen demand) with a simple glucose-peptone wastewater in the SCAS system resulted in a measurable shift in microbial metabolic response.


2017 ◽  
Author(s):  
Dong-Mei Wu ◽  
Jian-Xin Wang ◽  
Xiao-Hui Liu ◽  
Ying-Ping Fan ◽  
Ran Jiang ◽  
...  

The objective of this study was to characterize the structure and function of microbial communities in surface seawater from the Changjiang Estuary and adjacent areas, China. Sample water was collected at 12 sites and environmental parameters were measured. Community structure was analyzed using high-throughput sequencing of 16S rDNA genes. Predictive metagenomic approach was used to predict the function of bacterial communities. Result showed that sample site A0102 had the highest bacterial abundance and diversity. The heatmap indicated that different samples could be clustered into six groups. Phylogenetic analysis showed that Proteobacteria was the predominant phylum in all samples, followed by Bacteroidetes and Actinobacteria. Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The analysis of predictive metagenomic showed carbon fixation pathways in prokaryotes, nitrogen metabolism, carbon fixation in photosynthetic organisms, photosynthesis and polycyclic aromatic hydrocarbon degradation were enriched in all samples. Redundancy analysis (RDA) identified that dissolved oxygen (DO) and PO43– concentration had positive correlations with the bacterial communities while chemical oxygen demand (COD), dissolved oxygen (DO) and PO43– concentration were significantly associated with microbial functional diversity. This study adds to our knowledge of functional and taxonomic composition of microbial communities.


2011 ◽  
Vol 63 (11) ◽  
pp. 2513-2519 ◽  
Author(s):  
J. H. Garcia-Orozco ◽  
A. Vargas-Martinez ◽  
M. A. Ayala-Arnez

The objective of this research was to include ozonation prior to an activated sludge treatment and investigate the effect on the nitrogen species, their fate and the consequences of this oxidation upon the biomass. Three parallel treatment systems were used: the base system, where feed went directly to the activated sludge reactor, and two others, where the influent was ozonated at two different dosages, 15 and 25 mg/L of influent, prior to the biological reactors. The results from the ozonation chamber show a high oxidation capacity of the entering ammonia and organic nitrogen, proportional to the ozone dose. The oxidation product was nitrate. No de-nitrification was expected because a high oxygen concentration (4 mg/L) was maintained in the reactors. The reactors receiving ozonated influent showed a lower assimilation of nitrogen by the biomass. The sludge nitrogen content resulted in 11, 9.3 and 7.4% dry-weight corresponding to no-ozone, low ozone and high ozone dosages, respectively. In spite of the lower ammonia available in the ozonated flows, the corresponding reactors showed a higher specific nitrification rate. The ozonated system also performed better in terms of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals, besides showing a higher true biomass yield coefficient.


2018 ◽  
Vol 78 (10) ◽  
pp. 2104-2112
Author(s):  
Mateusz Sobczyk ◽  
Agnieszka Pajdak-Stós ◽  
Edyta Fiałkowska ◽  
Wioleta Kocerba-Soroka ◽  
Joanna Starzycka-Giża ◽  
...  

Abstract Biological microscopic analysis is a popular method employed in wastewater treatment plants worldwide for evaluating activated sludge condition. However, many operators still have reservations regarding its reliability. In this study, we evaluated and compared two methods of microscopic sludge investigation: the sludge index (SI) and the Eikelboom–van Buijsen method (EB). We investigated 79 activated sludge samples from nine treatment plants located in southern Poland over a 1-year period. For each sample, sludge volume index values were calculated and compared with the results of evaluation made on the basis of microscopic analysis. Additionally, the effluent quality was analysed in 45 of 79 cases, including investigation of suspended solids, biochemical oxygen demand, chemical oxygen demand, total nitrogen and total phosphorous. The sign test and Wilcoxon matched pairs test showed that a significant difference existed between the two investigated methods. General conclusions from both methods do not provide reliable information concerning nitrogen and phosphorus removal. The EB method had a tendency to be more conservative in its general conclusions than the SI method. Both are highly reliable for estimating activated sludge quality and solid separation properties.


2004 ◽  
Vol 50 (3) ◽  
pp. 11-20
Author(s):  
S.S. Helle ◽  
S.J.B. Duff

This study investigated the discrepancies between the BOD removal rates measured during short term assays and those measured during continuous activated sludge treatment of bleached kraft mill effluent (BKME). A combination of batch tests and fed batch tests with oxygen uptake rate (OUR), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and mixed liquor volatile suspended solids (MLVSS) measurements were used to characterize the degradation rates for the activated sludge treatment of BKME and to divide the soluble readily biodegradable substrate into two to five separate fractions based on biodegradation rates. The removal rates varied by over an order of magnitude between the most readily degradable substrates (1 × 10-3 mg COD/mg MLVSS minute), and the more slowly degradable substrates (2 × 10-5 mg COD/mg MLVSS minute). If the readily biodegradable fraction of BKME was modeled as one substrate, initial rate kinetic measurements from batch tests were heavily influenced by the fractions with the greatest degradation rates, while any remaining BOD in the treated effluent was predominantly from the slowly degradable fraction, giving inconsistent results. Taking the multi-component nature of the wastewater into account, batch test results can be used to predict fed-batch and continuous activated sludge reactor performance.


2020 ◽  
Vol 63 (6) ◽  
pp. 1747-1757
Author(s):  
Niranga M. Wickramarathne ◽  
Richard A. Cooke ◽  
Ruth Book ◽  
Laura E. Christianson

HighlightsOak leached more tannic acid, true color, and chemical oxygen demand (COD) than ash and mixed hardwood chips.The factors became similar (tannic acid, COD) or below stream levels (true color) after flushing.Eleven site-years of field bioreactor data showed decreasing tannic acid and true color over time.Post-startup tannic acid was lower in bioreactor outflow than in area streams.True color did not appear to be a reliable indicator of leachate tannic acid at low concentrations.Abstract. Woodchips have been a preferred denitrifying bioreactor medium to date, but concerns about potential harmful effects of tannins in the leachate have precluded the use of oak chips in many installations. A study was conducted to compare the suitability of oak (genus Quercus) woodchips as a denitrifying bioreactor medium relative to other types of woodchips, both in lab leachate tests and in the context of observed bioreactor leaching in the field. Assessment measures included the content of tannic acid and other compounds in the leachate, as well as leachate color, which can often be high during startup. An 84-day leaching test using rectangular bioreactor cells filled with either oak (Quercus rubra), ash (Fraxinus spp. L.), or a generic hardwood blend showed that oak initially leached higher concentrations of tannic acid, true color, and chemical oxygen demand (COD) than the other two media. The significant differences in leached concentrations among the three wood types were eliminated after a finite leaching period. Tannic acid and true color in 11 site-years of field bioreactor outflow data generally decreased over time, except following a dry period when one of the bioreactors received no drainage inflow for more than two months. The lab and field results indicated the capability of woodchip bioreactors to flush at least these two analytes to ambient stream levels. True color did not appear to be the best parameter for estimating the tannin content of woodchip leachate due to discrepancies at low concentrations. Mass normalized tannic acid leaching ranged from 0.03 to approximately 40 mg tannic acid g-1 woodchip across the lab and field assessments. Oak initially leached more tannic acid, color, and COD than the other wood types, but the eventual similarity among the wood types after flushing with a sufficient number of pore volumes meant that any potentially negative environmental impacts would likely be limited to the startup period or possibly after dry periods. Oak initially eluted higher mean total nitrogen (TN) concentrations than the other wood types, but the treatments were not significantly different by day 3, indicating that biological N removal was not significantly inhibited, even with high concentrations of tannic acid. Keywords: Chemical oxygen demand, Oak, Tannin, Water quality, Wood leachate.


2016 ◽  
Vol 74 (12) ◽  
pp. 2795-2806
Author(s):  
M. Manga ◽  
B. E. Evans ◽  
M. A. Camargo-Valero ◽  
N. J. Horan

The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.


Background: The performance and stability of activated sludge (AS) processes are strongly related to influent wastewater characteristics. Objective: To investigate the influence of different chemical compositions of influent wastewater, in terms of source of carbon, on activated sludge. Methods: Response was measured in oxygen uptake rate (OUR), volatile suspended solids in the mixed liquor (MVLSS), chemical oxygen demand (COD), and microbial community profile, obtained using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Results: Results showed that the microbial community profile obtained in both reactors is consistent with those reported for full-scale AS bioreactors treating sewage. However, when the source of carbon is less bioavailable (bioreactor 1), there was a statistically significant difference (p-value<0.05, 95% confidence) in the biological activity of the biomass, both in terms of MLVSS growth and OUR in comparison with the reactor with source of carbon more bioavailable (bioreactor 2). This difference also impacted the time required for complete acclimation: it could be considered completed in 15 days in bioreactor 2, whereas in bioreactor 1, acclimation required more than 120 days to be completed, as during this period there was no net biomass growth even though there was high COD removal.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 303-308 ◽  
Author(s):  
Leopoldo Mendoza-Espinosa ◽  
Tom Stephenson

Investigations were undertaken in order to compare the grease degradation rates for a natural population of acclimatised activated sludge micro-organisms with a commercial bioaugmentation product (bioadditive) under optimum conditions in laboratory-scale batch reactors. Lard was chosen as the source of grease because it contains the fatty acids more commonly found in urban wastewaters. During acclimatisation, the bioadditive reactor achieved a slightly better chemical oxygen demand (COD) removal efficiency than the activated sludge reactor. Therefore, under optimum conditions, activated sludge was able to degrade grease at nearly the same rate as a bioadditive solution. Moreover, the bioadditive and the activated sludge reactors had very similar kinetics of COD removal under different grease concentrations. It was concluded that the use of natural activated sludge micro-organisms was sufficient to acclimatise biological processes to removing grease.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3962-3969
Author(s):  
Binfang Shi ◽  
Jingang Huang ◽  
Zhenjiang Yin ◽  
Wei Han ◽  
Shanshan Qiu ◽  
...  

Fermentative valeric acid production is a promising way to recycle valuable resources from waste activated sludge (WAS). This study investigated the feasibility of using riboflavin (RF) to enhance volatile fatty acids (VFAs) production, especially valeric acid production from WAS coupled with solid reduction. The results indicated that RF (0.5 mM) promoted the VFAs production by up to 41.0%. Valeric acid accounted for the most abundance within the VFAs components. When RF dosages were 0.05 to 5.0 mM in the WAS fermentation systems, the chemical oxygen demand fractions of valeric acid to the total VFAs were 41.0% to 62.8%, which were much higher than those using other chemical supplements. Moreover, RF enhanced the reduction of mixed liquor volatile suspended solids (MLVSS). When RF dosage was 0.2 mM, MLVSS reduction achieved a maximum at 47.4%, compared to that in the RF-free control (33.9% reduction). Riboflavin in this study was considered as a feasible chemical to enhance the fermentative valeric acid generation coupled to MLVSS reduction, realizing the reduction of solids and the reutilization of valuable resources from WAS.


Sign in / Sign up

Export Citation Format

Share Document