scholarly journals Deep tillage reduces the dependence of tobacco on AMF and promotes the growth of tabacco(Nicotiana tabacum L.) in dryland

Author(s):  
Jialei Gong ◽  
Zhongyi Zheng ◽  
Bufan Zheng ◽  
Yongjun Liu ◽  
Ruiwen Hu ◽  
...  

The traditional shallow tillage method makes the soil quality declining, and affects the efficiency of agricultural production. Taking the conventional rotary tillage(12 cm) as the control, Yunyan 87 as the test variety, and the soil type of the test site is paddy soil, we studied the effects of deep tillage(Subsoiling 30 cm) on soil nutrients, arbuscular mycorrhizal fungi (AMF) and tobacco(Nicotiana tabacum L.)growth. The results showed that deep tillage increased the contents of organic carbon, available phosphorus(AP) and available potassium(AK) in 20 ~ 40 cm soil layer. The community of AMF was changed by deep tillage. Glomus, the dominant genus in both group, increased significantly in the soil after deep tillage. The colonization rate of AMF was lower than that of conventional rotary tillage. Deep tillage was beneficial to the growth of tobacco in the middle and late stages. Root growth and nutrient content of tobacco increased. Deep tillage significantly improved the output value of tobacco. It can be seen that deep tillage is conducive to improving soil fertility, promoting the vigorous growth of root, reducing the dependence of tobacco on AMF, and promoting the high quality and yield of tobacco in drylands of Hunan.

2020 ◽  
Author(s):  
Tiantian Gao ◽  
Zhongke Wang ◽  
Xinhua Lv ◽  
Guifang Li ◽  
Yaling He ◽  
...  

Abstract We investigated the rhizospheric arbuscular mycorrhizal (AM) fungi from the three medicinal licorice plants, i.e., Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. The AM fungi were reported to be affected by the host plant species as well as soil depth, physical, and chemical properties. We collected the rhizosphere from these licorice plants, from the soil layer with a depth of 0-20 cm, 20-40 cm, and 40-60 cm in the Xinjiang region. Furthermore, we employed the Illumina Miseq high-throughput sequencing platform to investigate the structure and diversity of these AM fungal communities. The soil physical and chemical properties were also evaluated to determine the relationship between the medicinal Glycyrrhiza rhizospheric AM fungi and the associated soil factors. In order to provide a reference for revealing the role of arbuscular mycorrhizal fungi in increasing the content of active components in cultivated licorice root, we isolated a total of 34 AM fungi that encompassed a phylum, a class, five (orders, families, and genus), and the Glomus and Paraglomus emerged as the dominant genus. We observed the highest diversity in the AM fungi in Glycyrrhiza uralensis Fisch. The Glycyrrhiza inflata showed the highest richness, whereas the Glycyrrhiza glabra showed the lowest richness and diversity in each soil layer. The plant species influenced the AM fungi more than the soil depth. The total phosphorus, available phosphorus, and organic matter in the soil prominently impacted the distribution of soil AM fungi. In contrast, the soil ammonium and nitrogen content had the lowest-impact on the AM fungi distribution. The genus Glomus was was found to be positively correlated with total phosphorus (P<0.001), and negatively correlated with total potassium (P<0.001), total salt (P<0.01), soil water content, and organic matter (P<0.05). The genus Paraglomus was found to be negatively correlated with the total phosphorus (P<0.001), whereas positively correlated with total potassium (P<0.001), total salt (P<0.001), organic matter (P<0.05), and fast-acting potassium (P<0.05). Besides, we found a positive correlation between the genus Diversispora and ammonium nitrogen (P<0.05), whereas the available phosphorus (P<0.05) and total salt (P<0.05) were negatively correlated with the genus Diversispora.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


Author(s):  
Priyanka Kumari ◽  
R. R. Singh ◽  
Ruby Rani ◽  
Mahendra Singh ◽  
Uday Kumar

Litchi (Litchi chinensis Sonn.) originated from South China, it is sub-tropical evergreen fruit crops, especially grown on the marginal climate of tropics and subtropics. It is delicious juicy fruit of India having excellent nutritional quality, pleasant flavoured, good amount of antioxidant and vitamins C, vitamin B-complex and phytonutrients flavonoids. It has a great potential to earn foreign exchange in the national and international market through export. Arbuscular mycorrhizal (AM) infection is a common association between plant roots and microorganisms. It is responsible for increasing plant nutrient uptake and also increases in macro and micronutrients in leaf. Therefore, the present work has been analyzed macro and micro nutrients from soil and leaf, after 60, 90 and 120 days after inoculation of two bio-inoculants with phosphorus (SSP) including nine treatments with three replications. After 120 days of inoculation both the species of mycorrhizal combination with phosphorus application were very effective. Highest Copper content is (10.99 ppm), Zinc (33.17 ppm), Iron (121.47 ppm) and Manganese (15.33 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil) which is gradually increases. The soil nutrient content gradually decreased with time duration but no- significant difference was found among treatments after 120 days inoculation. After 120 days potting result was found that the Copper content is (1.70 ppm), Zinc (3.07 ppm), Iron (7.80 ppm) and Manganese (4.00 ppm) was recorded in case T5 (G. mosseae 10 g + Phosphorus 50 mg kg-1 of soil).this research was undertaken to find out whether Arbuscular mycorrhizal (AM) infection and phosphorus affect the micro-nutrient status of soil and leaves in nursery stage.


1985 ◽  
Vol 15 (6) ◽  
pp. 1061-1064 ◽  
Author(s):  
Paul P. Kormanik

Sweetgum seedlings with vesicular–arbuscular mycorrhizae formed by Glomusetunicatum or Glomusdeserticola in nursery soil with 30 ppm available phosphorus (P) and nonmycorrhizal seedlings grown in nursery soil with 800 ppm available P were outplanted and whole trees were excavated periodically over the next 5 years in the plantation to follow mycorrhizal development. Four months after outplanting, roots of all initially nonmycorrhizal seedlings had formed vesicular–arbuscular mycorrhizae and the degree of root colonization was comparable to that of initially vesicular–arbuscular mycorrhizal seedlings. New feeder roots did not develop on seedlings of any treatment until almost 5 months after planting. By the end of the first growing season and for the remainder of the study, vesicular–arbuscular mycorrhizae development was approximately the same on all seedlings. The proportion of feeder roots colonized by vesicular–arbuscular mycorrhizal fungi stabilized at 65 to 70%; approximately 56% of the cortical tissues of all feeder roots were colonized with arbuscles, vesicles, and hyphae. Periodic assays of the soil in the plantation showed that vesicular–arbuscular mycorrhizal fungal spores gradually declined from an initial high of 3600 spores to 620 spores per 100-cm3 soil sample after 5 years. This decline was probably caused by crown closure of the sweetgum trees which gradually suppressed understory vegetation.


Sign in / Sign up

Export Citation Format

Share Document