The mean crystallite size within a hydrogenated nanocrystalline silicon based photovoltaic solar cell and its role in determining the corresponding crystalline volume fraction

2014 ◽  
Vol 92 (7/8) ◽  
pp. 857-861 ◽  
Author(s):  
K.J. Schmidt ◽  
Y. Lin ◽  
M. Beaudoin ◽  
G. Xia ◽  
S.K. O’Leary ◽  
...  

We examine the dependence of the crystalline volume fraction on the mean crystallite size for hydrogenated nanocrystalline silicon based photovoltaic solar cells; this work builds upon an earlier study by Schmidt et al. (Mater. Res. Soc. Symp. Proc. 1536 (2013)). For each photovoltaic solar cell considered, the X-ray diffraction and Raman spectra are measured. Through the application of Scherrer’s equation, the X-ray diffraction results are used to determine the corresponding mean crystallite sizes. Through peak decomposition, the Raman results are used to estimate the corresponding crystalline volume fraction. Plotting the crystalline volume fraction as a function of the mean crystallite size, it is found that larger mean crystallite sizes tend to favor reduced crystalline volume fractions. The ability to randomly pack smaller crystallites with a greater packing fraction than their larger counterparts was suggested as a possible explanation for this observation.

2013 ◽  
Vol 1536 ◽  
pp. 113-118 ◽  
Author(s):  
K. J. Schmidt ◽  
Y. Lin ◽  
M. Beaudoin ◽  
G. Xia ◽  
S. K. O'Leary ◽  
...  

ABSTRACTWe have performed an analysis on three hydrogenated nanocrystalline silicon (nc-Si:H) based solar cells. In order to determine the impact that impurities play in shaping the material properties, the XRD and Raman spectra corresponding to all three samples were measured. The XRD results, which displayed a number of crystalline silicon-based peaks, were used in order to approximate the mean crystallite sizes through Scherrer's equation. Through a peak decomposition process, the Raman results were used to estimate the corresponding crystalline volume fraction. It was noted that small crystallite sizes appear to favor larger crystalline volume fractions. This dependence seems to be related to the oxygen impurity concentration level within the intrinsic nc-Si:H layers.


1997 ◽  
Vol 30 (4) ◽  
pp. 427-430 ◽  
Author(s):  
F. Sánchez-Bajo ◽  
F. L. Cumbrera

A modified application of the variance method, using the pseudo-Voigt function as a good approximation to the X-ray diffraction profiles, is proposed in order to obtain microstructural quantities such as the mean crystallite size and root-mean-square (r.m.s.) strain. Whereas the variance method in its original form is applicable only to well separated reflections, this technique can be employed in the cases where there is line-profile overlap. Determination of the mean crystallite size and r.m.s. strain for several crystallographic directions in a nanocrystalline cubic sample of 9-YSZ (yttria-stabilized zirconia) has been performed by means of this procedure.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Angel Sanz ◽  
Joaquín Bastida ◽  
Angel Caballero ◽  
Marek Kojdecki

ABSTRACTCompositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes <D110> of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.


1962 ◽  
Vol 6 ◽  
pp. 191-201
Author(s):  
Robert C. Rau

AbstractSeveral methods for the routine determination of crystallite size by means of X-ray diffraction line-broadening have previously been reported. Although these techniques have proven useful and reliable when utilized with the single X-ray diffractometer and instrumental geometry used to originally develop the methods, it was not known whether other instruments would provide similar reliability. Therefore a study was performed to evaluate the applicability of routine methods of crystallite size analysis to other X-ray diffraction units. A series of six beryllium oxide powder specimens, whose average crystallite sizes ranged stepwise from about 35 to nearly 3000 Å, were used to test a number of X-ray diffractometers. By using a predetermined diffraction geometry for each instrument tested, measured crystallite sizes were found to be quite reproducible and well within the limits of experimental error. The testing procedure, instrumental conditions, and individual performance results are presented in this paper.


2020 ◽  
Vol 855 ◽  
pp. 108-116
Author(s):  
Novrita Idayanti ◽  
Dedi ◽  
Azwar Manaf

Magnetic property studies and the crystallite structures evolution of spinel ferrite CoFe2O4 particles are reported in this paper. The ferrite was prepared through mechanical milling of all alloy precursors and sintered at various temperatures of 800, 900, 1000, and 1100 °C to promote the crystalline structure. X-ray diffraction (XRD) and Williamson-Hall plot were used to calculate the mean crystallite size and microstrain. Changes in the microstructure and crystallite sizes were occurring due to sintering treatments. It is found that the remanence (Mr) and saturation magnetization (Ms) increase with increasing sintering temperature, but a decrease occurred only at the temperature of 1100 °C. The optimum magnetic properties were obtained in a sample sintered at 1000 °C with a value of Mr = 36.00 emu/g and Ms= 74.05 emu/g.


2020 ◽  
Vol 105 (5) ◽  
pp. 652-663
Author(s):  
Peter J. Heaney ◽  
Matthew J. Oxman ◽  
Si Athena Chen

Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-order kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth.


2007 ◽  
Vol 29-30 ◽  
pp. 211-214 ◽  
Author(s):  
D.L. Morgan ◽  
E.R. Waclawik ◽  
R.L Frost

Nanotubes were produced from commercial and self-prepared anatase and rutile which were treated with 7.5 M NaOH over a temperature range of 100 – 200°C in 20°C increments. The formation of nanotubes was examined as a function of starting material type and size. Products were characterised by X-Ray Diffraction (XRD), Transmission Electron Spectroscopy (TEM), and Raman Spectroscopy. The results indicated that both phase and crystallite size affected the nanotube formation. Rutile was observed to require a greater driving force than anatase to form nanotubes, and increases in crystallite sizes appeared to impede formation slightly.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
K. Uma Mahendra Kumar ◽  
M. Ghanashyam Krishna

Chromium metal-induced nanocrystallization of amorphous silicon (a-Si) thin films is reported. The nanocrystalline nature of these films is confirmed from X-ray diffraction and Raman spectroscopy. Significantly, the deconvolution of Raman spectra reveals that the thin films were crystallized in a mixed phase of cubic diamond and wurzite structure as evidenced by the lines at 512 and 496 cm−1, respectively. The crystallite sizes were between 4 to 8 nm. Optical properties of the crystallized silicon, derived from spectral transmittance curves, revealed high transmission in the region above the band gap. Optical band gap varied between 1.3 to 2.0 eV depending on the nature of crystallinity of these films and remained unaltered with increase in Cr addition from 5 to 30%. This signifies that the electronic structure of the nanocrystalline Silicon films is not affected considerably inspite of the presence of metal silicides and the process of crystallization.


2012 ◽  
Vol 05 ◽  
pp. 784-792 ◽  
Author(s):  
E. MEMARZADEH LOTFABAD ◽  
H. R. MADAAH HOSSEINI

The Active Screen Plasma Nitriding (ASPN) treatment of Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 alloy was investigated for 3 h at 480 °C and 560 °C in various N 2- H 2 gas mixtures at 5 mbar atmosphere. The amorphous ribbons were then annealed under vacuum at the same time and temperatures. The samples were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Microhardness measurements and Vibrating Sample Magnetometer (VSM). It was observed that the ASPN treatment leads to finer grain size and higher crystalline volume fraction and modifies the structural features of Fe ( Si ) phase. The Fe ( Si ) lattice parameter for the nitrided samples was higher than that for the annealed samples due to the diffusion of nitrogen into the Fe ( Si ) phase and the formation of Si - N precipitates. In ASPN treatment, the lowest magnitude of coercivity and the maximum saturated magnetization were obtained at 480 °C and 560 °C, respectively, in 75% H 2-25% N 2 gas mixture. ASPN treatment increased the microhardness of the samples.


Sign in / Sign up

Export Citation Format

Share Document