X-ray diffraction Warren–Averbach mullite analysis in whiteware porcelains: influence of kaolin raw material

Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Angel Sanz ◽  
Joaquín Bastida ◽  
Angel Caballero ◽  
Marek Kojdecki

ABSTRACTCompositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes <D110> of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.

2014 ◽  
Vol 1056 ◽  
pp. 12-15 ◽  
Author(s):  
Wen Long Zhang ◽  
Wen Long Zhao ◽  
Ya Jie Dai

Reed Pulp was Raw Material that Pretreated by Four Methods {ultrasonic, Microwave, N, N-Dimethyl Acetamide (DMAc) and Tetrahydrofuran (THF)}. Reed Microcrystalline Cellulose (MCC) was Prepared by the Dilute Hydrochloric Acid Hydrolysis from Pretreated Reed Pulp. the Influences of Pretreatment Methods on Crystalline Type, Crystallinity and Crystallite Size of MCC were Investigated by X-Ray Diffraction (XRD). the Results Showed that the Crystallinity of MCC with Four Pretreatment Methods was 68.45%, 62.28%, 63.21% and 69.56%, Respectively. the Average Crystallite Size of MCC Prepared by Hydrolysis after Pretreated by Dmac was the Largest. whereas, the Crystal Type of MCC was Not Changed, it was still the Cellulose Type I. Comprehensive Analysis Indicated that the Effects of MCC Prepared by Hydrolysis after Pretreated by Ultrasonic were the Best.


Cerâmica ◽  
2007 ◽  
Vol 53 (328) ◽  
pp. 422-447
Author(s):  
F. C. D. Lemos ◽  
D. M. A. Melo ◽  
P. S. de Lima ◽  
C. A. Paskocimas ◽  
E. Longo ◽  
...  

Rare earth modified lead titanate powders Pb1-xRExTiO3 (REPT), x = 0.01, 0.05, 0.07 and RE = Yb, Y, were prepared by the Pechini method. The materials were calcined under flowing oxygen at different temperatures from 300 to 700 ºC. Nanostructured REPT were investigated using X-ray diffraction, scanning electron microscopy and surface area analysis (BET). The results suggest that the modifier cation incorporated into the system has notable influence in the microstructure and a notable decrease in the crystallite sizes.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2131 ◽  
Author(s):  
G.U. Ryu ◽  
G.M. Kim ◽  
Hammad R. Khalid ◽  
H.K. Lee

Blast furnace slag, an industrial by-product, is emerging as a potential raw material to synthesize hydroxyapatite and zeolite. In this study, the effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite from blast furnace slag were investigated. Specimens were synthesized at different temperatures (room temperature, 50, 90, 120, or 150 °C). The synthesized specimens were analyzed qualitatively and quantitatively via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET/BJH, and scanning electron microscopy/energy dispersive using X-ray analysis (SEM/EDX). It was found that the hydroxyapatite phase was synthesized at all the reaction temperatures, while faujasite type zeolite appeared in the specimens synthesized at 90 and 120 °C. Moreover, faujasite was replaced by hydroxysodalite in the specimens synthesized at 150 °C. Additionally, the crystals of the hydroxyapatite tended to become larger and total crystallinity increased as the reaction temperature increased.


2005 ◽  
Vol 38 (6) ◽  
pp. 912-926 ◽  
Author(s):  
G. Ribárik ◽  
N. Audebrand ◽  
H. Palancher ◽  
T. Ungár ◽  
D. Louër

The dislocation densities and crystallite size distributions in ball-milled fluorides,MF2(M= Ca, Sr, Ba and Cd), of the fluorite structure type have been determined as a function of milling time by X-ray diffraction line-profile analysis. The treatment has been based on the concept of dislocation contrast to explain strain anisotropy by means of the modified Williamson–Hall and Warren–Averbach approaches and a whole-profile fitting method using physically based functions. In most cases, the measured and calculated patterns are in perfect agreement; however, in some specific cases, the first few measured profiles appear to be narrower than the calculated ones. This discrepancy is interpreted as the result of an interference effect similar to that described by Rafaja, Klemm, Schreiber, Knapp & Kužel [J. Appl. Cryst.(2004),37, 613–620]. By taking into account and correcting for this interference effect, the microstructure of ball-milled fluorides is determined in terms of dislocation structure and size distributions of coherent domains. A weak coalescence of the crystallites is observed at longer milling periods. An incubation period in the evolution of microstrains is in correlation with the homologous temperatures of the fluorides.


2014 ◽  
Vol 04 (02) ◽  
pp. 1450007 ◽  
Author(s):  
Shivani Suri ◽  
Vishal Singh ◽  
K. K. Bamzai

Neodymium-doped barium phosphate (NdBP) was prepared as single crystal by room temperature solution technique known as gel encapsulation technique. Single crystal X-ray diffraction shows that the crystal belongs to orthorhombic system. The flower type morphology was observed by scanning electron microscope (SEM) and the stoichiometric composition of the prepared crystal was observed by energy dispersive X-ray analysis (EDAX). The presence of functional group and other groups was studied by Fourier transform infrared spectroscopy (FTIR). The electrical properties of these materials like dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity [ln(σac)] was studied at different temperatures ranging from 40°C to 420°C in the frequency range of 5 kHz to 1 MHz. The activation energy values decreases with increase in frequency suggesting that the conduction mechanism is because of hopping of charge carriers.


2015 ◽  
Vol 71 (a1) ◽  
pp. s287-s288
Author(s):  
Sigmund H. Neher ◽  
Chaouachi Marwen ◽  
Falenty Andrzej ◽  
Klein Helmut ◽  
Werner F. Kuhs

2016 ◽  
Vol 690 ◽  
pp. 97-102
Author(s):  
Nuntaporn Kongkajun ◽  
Parinya Chakartnarodom ◽  
Warunee Borwornkiatkaew

The aim of this work is to propose the utilization of aluminium buff from aluminium part manufacturer as a raw material for cordierite batch composition. The powder mixtures were compacted by uniaxial pressing. The green compacts were sintered at temperature in the range 1300-1400°C for 2 hours in air. The physical properties were characterized by Archimedes method, Brazilian test and dilatometry. Phase and microstructural analysis were done by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis showed the major phase was cordierite along with sapphirine as a secondary phase. The fired properties of materials were demonstrated that the optimal properties was achieved from the specimen sintered at 1375 °C.


1962 ◽  
Vol 6 ◽  
pp. 191-201
Author(s):  
Robert C. Rau

AbstractSeveral methods for the routine determination of crystallite size by means of X-ray diffraction line-broadening have previously been reported. Although these techniques have proven useful and reliable when utilized with the single X-ray diffractometer and instrumental geometry used to originally develop the methods, it was not known whether other instruments would provide similar reliability. Therefore a study was performed to evaluate the applicability of routine methods of crystallite size analysis to other X-ray diffraction units. A series of six beryllium oxide powder specimens, whose average crystallite sizes ranged stepwise from about 35 to nearly 3000 Å, were used to test a number of X-ray diffractometers. By using a predetermined diffraction geometry for each instrument tested, measured crystallite sizes were found to be quite reproducible and well within the limits of experimental error. The testing procedure, instrumental conditions, and individual performance results are presented in this paper.


2020 ◽  
Vol 105 (5) ◽  
pp. 652-663
Author(s):  
Peter J. Heaney ◽  
Matthew J. Oxman ◽  
Si Athena Chen

Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-order kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth.


2007 ◽  
Vol 121-123 ◽  
pp. 53-56 ◽  
Author(s):  
J. Azadmanjiri ◽  
Hojjatollah K. Salehani ◽  
A. Dehghan Hamedan ◽  
M. Sadeghi

In this work, high purity BaTiO3 (BT) nano-powders by a sol-gel process was prepared with Ba(NO3)2 and Ti(C4H9O)4 materials in order to acquire uniform size grains. The effects of the crystallinity, microstructure of BT nano-powders calcined at different temperatures and dielectric properties of the ceramics were investigated by XRD, SEM and impedance analyzer, respectively. Scanning electron microscopy and X-ray diffraction investigation revealed cubic plates and crystallite size. The results revealed that crystallite size and calcination temperature of BT and influence on the dielectric constant.


Sign in / Sign up

Export Citation Format

Share Document