scholarly journals Anisotropic solution in phantom cosmology via Noether symmetry approach

2018 ◽  
Vol 96 (7) ◽  
pp. 677-680 ◽  
Author(s):  
I. Basaran Oz ◽  
Y. Kucukakca ◽  
N. Unal

In this study, we consider a phantom cosmology in which a scalar field is minimally coupled to gravity. For anisotropic locally rotational symmetric (LRS) Bianchi type I space–time, we use the Noether symmetry approach to determine the potential of such a theory. It is shown that the potential must be in the trigonometric form as a function of the scalar field. We solved the field equations of the theory using the result obtained from the Noether symmetry. Our solution shows that the universe has an accelerating expanding phase.

Author(s):  
Ertan Gudekli ◽  
E. Demir

This paper deals with the Locally rotationally symmetric (LRS) Bianchi type-I universe model in Mimetic Gravity Theory assuming it an extended form of General Relativity Theory. It was proclaimed as a conformal transformation of the Einstein-Hilbert action from Einstein frame to Jordon frame. At the outset, we have proposed a potential function on account of clarifying the expansion of our universe by considering the general solutions of the field equations that originate from the action of the theory including the Lagrange multipliers. Lastly, after having been achieved the general equation of the state parameter ω, we discussed whether the result corresponds to some fluids illuminating the expansion of the Universe or not.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 403
Author(s):  
Yihu Feng ◽  
Lei Hou

In this current study, we explore the modified homogeneous cosmological model in the background of LRS Bianchi type-I space–time. For this purpose, we employ the Homotopy Perturbation Method (HPM). HPM is an analytical-based method. Further, we calculated the main field equations of the cosmological model LRS Bianchi type-I space–time. Furthermore, we discuss the necessary calculations of HPM. Therefore, we investigate the analytical solution of our problem by adopting HPM. In this response, we discuss five different values of parameter n. We also give a brief discussion about solutions. The main purpose of this study is to apply the application of HPM in the cosmological field.


2003 ◽  
Vol 288 (4) ◽  
pp. 523-529 ◽  
Author(s):  
G. Mohanty ◽  
S.K. Sahu ◽  
P.K. Sahoo

Author(s):  
Kalyani Desikan

A study of Bianchi Type I cosmological model is undertaken in the framework of creation of particles. To accommodate the creation of new particles, the universe is regarded as an Open thermodynamical system. The energy conservation equation is modified with the incorporation of a creation pressure in the energy momentum tensor. Exact solutions of the field equations are obtained (i) for a particular choice of the particle creation function and (ii) by considering the deceleration parameter to be constant. In the first model the behavior of the solution at late times is investigated. The physical aspects of the model have also been discussed. In the case of the second model we have restricted our analysis to the power law behaviour for the average scale factor. This leads to a particular form for the particle creation function. The behavior of the solution is investigated and the physical aspects of the model have also been discussed for the matter dominated era.


2020 ◽  
Vol 17 (11) ◽  
pp. 2050163
Author(s):  
Adnan Malik ◽  
M. Farasat Shamir ◽  
Ibrar Hussain

This paper investigates the Noether symmetry approach in modified [Formula: see text] theory of gravity, where [Formula: see text] is the Ricci scalar, [Formula: see text] is a scalar field and [Formula: see text] is the kinetic energy term. For this purpose, we consider Locally Rotationally Symmetric (LRS) Bianchi Type-I spacetimes. The cosmological solutions are developed through Noether symmetry approach. The determining equations are computed in the context of a point-like Lagrangian for [Formula: see text] gravity. In particular, three different cases are taken into account for the LRS Bianchi Type-I spacetimes. Some important conserved quantities for the Lagrangian in this modified theory of gravity are worked out through the determining equations. In this scenario, the graphical behavior of energy density, pressure component and equation of state parameter are reported and analyzed with the help of first integrals of motion. The negative trends of the strong energy conditions actually suggest that the said theory supports expanding Universe with dark energy.


2002 ◽  
Vol 11 (08) ◽  
pp. 1171-1182 ◽  
Author(s):  
T. HARKO ◽  
M. K. MAK

We consider the dynamics of a Bianchi type I spacetime in the presence of dilaton and magnetic fields. The general solution of the Einstein–Maxwell dilaton field equations can be obtained in an exact parametric form. Depending on the numerical values of the parameters of the model there are three distinct classes of solutions. The time evolution of the mean anisotropy, shear and deceleration parameters is considered in detail and it is shown that a magnetic-dilaton anisotropic Bianchi type I geometry does not isotropize, the initial anisotropy being present in the universe for all times.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Yusuf Kucukakca ◽  
Amin Rezaei Akbarieh

AbstractIn this paper, we explore an Einstein-aether cosmological model by adding the scalar field in which it has an interaction with the aether field. For the cosmological implications of the model, we consider that the universe can be described by the spatially flat FRW metric together with the matter dominated universe. Applying Noether symmetry approach to the point-like Lagrangian we determine the explicit forms of unknown functions i.e. the potential and coupling function. We solve the analytical cosmological solutions of the field equations admitting the Noether symmetry, basically divided into two parts. Our results show that the obtained solutions lead to an accelerated expansion of the universe. We also discuss the tensor perturbations within the framework of this model in order to get information about the mass of gravitational waves.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050054
Author(s):  
V. R. Chirde ◽  
S. P. Hatkar ◽  
S. D. Katore

We have studied LRS Bianchi type I cosmological models with barotropic perfect fluid and cosmic string in the framework of [Formula: see text] theory of gravitation. We have assumed that expansion of the model is proportional to the shear scalar. Hybrid law of expansion is also used to solve the field equations. Three different functional forms of the function [Formula: see text] such as [Formula: see text] [Formula: see text] and [Formula: see text] are chosen for investigation. It is observed that the universe is dominated by quintessence type dark energy. The universe is accelerating, expanding and anisotropic.


Sign in / Sign up

Export Citation Format

Share Document