Effect of polymer-coated urea on nitrous oxide emission in zero-till and conventionally tilled silage corn

2016 ◽  
Vol 96 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Derek E. Hunt ◽  
Shabtai Bittman ◽  
Hongjie Zhang ◽  
Rita Bhandral ◽  
Cynthia A. Grant ◽  
...  

Little is known about nitrous oxide (N2O) emission from silage corn (Zea mays L.). Studies have shown that controlled-release N fertilizers have the potential to reduce N2O emissions, compared with conventional N fertilizers. This 2-year field study compared N2O emissions from urea fertilizer and a slow-release polymer-coated urea (CRU) applied to silage corn on soils managed with conventional tillage (CT) and zero tillage (ZT). The study was conducted on a silty loam soil in the cool, moist climate of south coastal British Columbia, Canada, taking year-around measurements from static chambers. Over 2 study years there was a significant interaction between N sources and tillage methods; under CT there was no significant difference between CRU and urea (557 vs. 447 g N2O-N ha−1 year−1, respectively), but under ZT, emissions from CRU were significantly higher than from urea (968 vs. 381 g N2O-N ha−1 year−1, respectively). Annual emissions of N2O-N ranged from 0.09 to 0.65% of applied N fertilizer. The CRU also had significantly greater emissions than urea per unit N uptake and plant yield under ZT, while there was no significant difference between N sources under CT. The results do not indicate that NO3− release from broadcast CRU matches corn growth or reduces emission of N2O.

2020 ◽  
Vol 13 (2) ◽  
pp. 6
Author(s):  
J. J. Frazão ◽  
A. R. Silva ◽  
F. H. M. Salgado ◽  
R. A. Flores ◽  
E. P. F. Brasil

The increase of the efficiency of the nitrogen fertilization promotes reduction of the applied dose and decreases the losses of nitrogen (N) to the environment. The objective of this work was to evaluate the yield and the relative chlorophyll index (IRC) in cabbage crop under cover fertilization, using enhanced-efficiency nitrogen fertilizers, compared to urea, in variable doses. The experimental design was randomized blocks in a 3x4+1 factorial scheme (three sources, four rates and control), with four replications. The N sources used were: common urea (U), urea treated with urease inhibitor NBPT® (UN) and Kimcoat® polymer coated urea (UK). The N rates used were 0, 40, 80, 160 and 320 kg ha-1, divided in two fertilizations at 20 and 40 days after transplantation. Up to 160 kg ha-1 of N, there was no difference between N sources and N rates for both yield and RCI. The enhanced-efficiency N sources (UN and UK) promoted higher averages compared to common urea, possibly due to the higher N losses from common urea. Thus, the use of urease inhibitors or polymers associated with urea is a promising strategy to improve cabbage yield, as well as reducing N losses to the environment.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Saima Kalsoom Babar ◽  
Mohd Khanif Yusop ◽  
Shakeel Ahmed Babar ◽  
Aijaz Ali Khooharo

Nitrogen (N) losses from agricultural fields are commonly observed particularly from urea. The rate of urea hydrolysis is accelerated as it remains in conventional form and about 70% of applied urea losses in different forms to atmosphere. Ammonia volatilization is persuasive loss among all the losses from urea. Therefore to minimize ammonia (NH3) volatilization the micronutrient coated urea is applied to enhance N-efficiency and its uptake. This study is an application of micronutrient coated urea with zinc (Zn) and copper (Cu) for two soil series of Malaysia. A laboratory experiment was designed according to the force draft technique for trapping the NH3 loss. The results have manifested that the rate of ammonia volatilization was 16% from uncoated urea and 8% from coated urea with micronutrients during the first two weeks of observations. After the six weeks of observations it was perceived that the ammonia losses for both soil series were gradually decreased with time. The mean comparison by using Tukey’s range test has shown the positive effect of micronutrient coated urea in comparison with the conventional urea. However the urea coated with the combination of both micronutrients Cu and Zn has shown significant difference in contrast to the coating urea with single micronutrient. The overall results revealed the efficacy of micronutrient coated urea on both of the soil series to maximize N-uptake and reduce NH3 volatilization.


Author(s):  
Bernardo Melo Montes Nogueira Borges ◽  
Fernanda Ribeiro Peixoto ◽  
Marilena de Melo Braga ◽  
Barbara de Brito Brunozzi ◽  
Maria Lucia Silveira ◽  
...  

Nitrogen fertilization is an important input for crop yield; however, it can result in detrimental environmental effects due to low use efficiency of regular N sources. This study evaluated the effects of N fertilizers and application strategies (single vs. split application) on bermudagrass (Cynodon spp.) responses and release pattern and rate in controlled and field incubations. The bermudagrass study was arranged in a two-way factorial scheme of 6 N fertilizers, urea, Polymer Coated Urea (PCU), PCU-6 (6 months), PCU-4 (4 months), PCU-2 (2 months) and urea + urease inhibitor (U-NBPT) applied as a single (400 kg N ha-1 yr-1) or two split applications of 200 kg N ha-1 (400 kg N ha-1 yr-1). The controlled experiment was a two-way factorial of PCU-6, PCU-4, PCU-2 and 15, 45 and 90% water hold capacity (WHC), sampling period of 170 days, the field incubation used the same sources sampled up to 220 days. Enhanced-efficiency fertilizers (EEF) increased herbage accumulation (HA) by 1.3 Mg ha-1 compared to untreated urea, on average. Nitrogen use efficiency (NUE) was greater for EEFs (44%) than urea (36%). Results showed that increased soil moisture inferred positive responses in release pattern and a minimum of 45% WHC was necessary for optimum release. Fertilizers at field conditions resulted in an earlier release than expected, ~20 days.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


2014 ◽  
Vol 153 (5) ◽  
pp. 862-875 ◽  
Author(s):  
J. BRENNAN ◽  
P. D. FORRISTAL ◽  
T. McCABE ◽  
R. HACKETT

SUMMARYField experiments were conducted between 2009 and 2011 in Ireland to compare the effects of soil tillage systems on the grain yield, nitrogen use efficiency (NUE) and nitrogen (N) uptake patterns of spring barley (Hordeum vulgare) in a cool Atlantic climate. The four tillage treatments comprised conventional tillage in spring (CT), reduced tillage in autumn (RT A), reduced tillage in spring (RT S) and reduced tillage in autumn and spring (RT A+S). Each tillage system was evaluated with five levels of fertilizer N (0, 75, 105, 135 and 165 kg N/ha). Grain yield varied between years but CT had a significantly higher mean yield over the three years than the RT systems. There was no significant difference between the three RT systems. Tillage system had no significant effect on the grain yield response to fertilizer N. As a result of the higher yields achieved, the CT system had a higher NUE than the RT systems at all N rates. There was no significant difference in NUE between the three RT systems. Conventional tillage had significantly higher nitrogen uptake efficiency (NUpE) than RT A and a significantly higher nitrogen utilization efficiency (NUtE) than all three RT systems. Crop N uptake followed a similar pattern each year. Large amounts of N were accumulated during the vegetative growth stages while N was lost after anthesis. Increased N rates had a positive effect on N uptake in the early growth stages but tended to promote N loss later in the season. The CT system had the highest N uptake in the initial growth stages but its rate of uptake diminished at a faster rate than the RT systems as the season progressed. Tillage system had an inconsistent effect on crop N content during the later growth stages. On the basis of these results it is concluded that the use of non-inversion tillage systems for spring barley establishment in a cool oceanic climate remains challenging and in certain conditions may result in a reduction in NUE and lower and more variable grain yields than conventional plough-based systems.


Author(s):  
Gabriel B. da Silva Júnior ◽  
Eduardo M. dos Santos ◽  
Roberto L. Silva ◽  
Ítalo H. L. Cavalcante

ABSTRACT As a strategy to minimize N losses in the soil, mineral N sources, such as polymer-coated urea, have been studied as possibility to increase the synchronization of N release by the fertilizer and its absorption by plants. Thus, this study aimed to evaluate the contents of macronutrients and the production of Formosa papaya as a function of sources and doses of N fertilizer applied as top-dressing in the region of Bom Jesus-PI, Brazil. The treatments were arranged in a 2 x 4 factorial scheme corresponding to N sources (coated urea and conventional urea) and N doses (350, 440, 530 and 620 g plant-1 of N), with four replicates and four plants per plot. The contents of macronutrients in the leaf dry matter and fruit production were evaluated. The sources and doses of top-dressing N fertilization incremented the leaf contents of macronutrients and the production of Formosa papaya hybrid Caliman 01. Under the experimental conditions and based on the macronutrient contents considered as adequate for crop nutrition, associated with maximum fruit production (8.08 kg plant-1), the supply of 525 g of N plant-1 is recommended in the form of coated urea.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1745-1749 ◽  
Author(s):  
Eric D. Miltner ◽  
Gwen K. Stahnke ◽  
William J. Johnston ◽  
Charles T. Golob

Late fall N fertilization of cool-season turfgrass in northern climates is a common practice. Previous research has been focused in climates where freezing temperatures prevail. Research in more moderate northern climates where turf may not go through winter dormancy is scarce. Four fertilizer N sources and an untreated control were applied in four different months (November, December, January, or February) to perennial ryegrass (Lolium perenne L.) in Puyallup, Wash., and to kentucky bluegrass (Poa pratensis L.) In Pullman, Wash., to compare their effects in moderate (Puyallup) and freezing (Pullman) winter climates. In Pullman, only November applications of ammonium sulfate (AmS) or polymer coated sulfur coated urea (PCSCU) enhanced winter turfgrass quality. In Puyallup, November or December application of AmS, PCSCU, or polymer coated urea (PCU) resulted in enhanced winter quality. Polymer coated urea yielded a delayed initial response and a longer residual effect in the spring. Isobutylidenediurea (IBDU) did not improve winter turf quality in either Pullman or Puyallup. Although there was no quality response following January fertilizer application, there was suppression of red thread [Laetisaria fuciformis (McAlpine) Burds.] symptoms in Puyallup, indicating N uptake. Late fall fertilizer N in eastern Washington should be confined to November, using soluble or more quickly available slow-release nitrogen fertilizers. The application window can be extended to December in western Washington, and more slowly available coated ureas can be effectively used.


2020 ◽  
Vol 63 (1) ◽  
pp. 62-66
Author(s):  
Imdad Ali Mahmood ◽  
Muhammad Arshad Ullah ◽  
Muhammad Riaz Chatha ◽  
Muhammad Suhaib

A field study was conducted to investigate the effect of different N fertilizer sources (urea, nitrophos, ammonium sulphate and calcium ammonium nitrate) on the productivity of wheat (var. Inqlab) in naturally salt-affected soil (pH = 8.79; ECe = 6.46; Sandy loam). A significant difference was observed in wheat grain and straw yield with the application of different N sources. Maximum wheat grain and straw yields (3203 and 3489 kg/ha, respectively) were recorded when ammonium sulphate was applied. Various N sources followed the order: Ammonium sulphate > urea > calcium ammonium nitrate and/or nitrophos. Comparatively higher N uptake by wheat (117.26 and 114.00 kg/ha) was observed with Ammonium sulphate and urea application, respectively. Similarly, maximum N recovery was observed with both these N sources followed by nitrophos, and calcium ammonium nitrate. However, the highest physiological efficiency (14.29 kg/kg fertilizer applied) was noted with the application of ammonium sulphate.  


Sign in / Sign up

Export Citation Format

Share Document