scholarly journals Short Communication Physiological Efficiency and N Recovery of Wheat Influenced by Different N Sources Under Naturally Salt-Affected Soil

2020 ◽  
Vol 63 (1) ◽  
pp. 62-66
Author(s):  
Imdad Ali Mahmood ◽  
Muhammad Arshad Ullah ◽  
Muhammad Riaz Chatha ◽  
Muhammad Suhaib

A field study was conducted to investigate the effect of different N fertilizer sources (urea, nitrophos, ammonium sulphate and calcium ammonium nitrate) on the productivity of wheat (var. Inqlab) in naturally salt-affected soil (pH = 8.79; ECe = 6.46; Sandy loam). A significant difference was observed in wheat grain and straw yield with the application of different N sources. Maximum wheat grain and straw yields (3203 and 3489 kg/ha, respectively) were recorded when ammonium sulphate was applied. Various N sources followed the order: Ammonium sulphate > urea > calcium ammonium nitrate and/or nitrophos. Comparatively higher N uptake by wheat (117.26 and 114.00 kg/ha) was observed with Ammonium sulphate and urea application, respectively. Similarly, maximum N recovery was observed with both these N sources followed by nitrophos, and calcium ammonium nitrate. However, the highest physiological efficiency (14.29 kg/kg fertilizer applied) was noted with the application of ammonium sulphate.  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 844
Author(s):  
Carlos Martín Sastre ◽  
Ruth Barro ◽  
Yolanda González-Arechavala ◽  
Ana Santos-Montes ◽  
Pilar Ciria

Nitrogen fertilizers have been identified in energy crops LCAs as the main contributors to global warming, as well as to many other environmental impacts. The distinct production process and application emissions of nitrogen fertilizer types for top dressing produce different GHG savings when energy crops value chains are compared to fossil energy alternatives. In this study, three types of fertilizers (calcium ammonium nitrate, urea and ammonium sulphate) at N top dressing rates of 80 kg N/ha are used to grow rye for electricity generation under the conditions of the Continental Mediterranean climate of central-northern Spain. Complete LCAs for the whole value chain based on real data were performed in conjunction with soil nitrogen balances (SNBs) to assess the accomplishment of European Union (EU) GHG savings sustainability criteria, as well as the sustainability of fertilization practices for soil nitrogen stocks. The results obtained can provide interesting insights for policy making, since calcium ammonium nitrate, the most common fertilizer for rye crops, led to 66% GHG savings, as opposed to the 69% achieved when applying urea and 77% when ammonium sulphate was used. Nevertheless, the three fertilizers produced annual soil deficits greater than 50 kg N/ha. In order to ensure savings above 80%, as required by the EU sustainability criteria, and sustainable SNBs, additional optimization measures should be taken at key points of the value chain.


1970 ◽  
Vol 74 (1) ◽  
pp. 111-117 ◽  
Author(s):  
E. D. Spratt ◽  
J. K. R. Gasser

SUMMARYWheat, ryegrass and kale were grown with ammonium sulphate (treated with a nitrification inhibitor) or calcium nitrate supplying 50 and 100 lb N/acre, and without fertilizer-N. Plants were sampled at various stages, dry weights measured, percentage N determined and N uptakes calculated.Initially wheat and ryegrass grew better and took up more N with ammonium fertilizer than with nitrate. Final yields of dry matter did not differ between forms. Kale produced more dry matter with calcium nitrate than with ammonium sulphate. All crops produced more dry matter with fertilizer-N than without. Fertilized crops contained greatest weights of N 109 days after sowing, when wheat and ryegrass had more with ammonium than with nitrate and kale had less. The 50 lb N/acre as calcium nitrate produced the most wheat grain/lb of fertilizer-N.During the period when growth and N uptake were fastest, wheat grew faster with ammonium than with nitrate, ryegrass grew similarly with both forms, and kale faster with nitrate; wheat and ryegrass took up N faster from ammonium sulphate and kale from calcium nitrate.Mature wheat recovered 58% of the fertilizer-N from calcium nitrate and 43% from ammonium sulphate. After 21 weeks of growth, kale recovered more N from calcium nitrate (50%) than from ammonium sulphate (24%), whereas grass recovered about 40% from each.


Author(s):  
M.D. Craighead ◽  
J.A. Hayward ◽  
A.M. Howie

Since 1994 Ravensdown have carried out a series of pastoral trials in South Canterbury, aimed at looking at the relative effectiveness of different forms of nitrogen in the spring. These trials showed that in general those N products containing some nitrate-N (i.e., calcium ammonium nitrate - CAN, and ammonium sulphate nitrate - ASN) could be more effective than urea and ammonium sulphate when soil temperatures were low. However, responses were inconsistent because of spring climatic conditions. In 1994 and 1996 CAN produced the most dry matter but in 1995, responses to the form of N were less clear. Responses to nitrate-N were generally best when spring soil temperatures were 3-5°C at the time of application. The magnitude of N responses varied with the rate applied, and the type of pasture to which N was applied. Responses generally lasted the equivalent of two to three grazings. Keywords: ammonium-N, ammonium sulphate, ammonium sulphate nitrate, calcium ammonium nitrate, nitrate fertilisers, nitrate-N, urea


2014 ◽  
Vol 60 (No. 1) ◽  
pp. 1-7
Author(s):  
K. Kubešová ◽  
J. Balík ◽  
O. Sedlář ◽  
L. Peklová

In field experiments over three vegetation periods (2010–2012) we studied impact of the CULTAN (controlled uptake long term ammonium nutrition) method on yield and yield parameters of kernel maize. The field experiments were conducted at three sites with different soil-climatic conditions. CULTAN treatments were fertilized once with the total amount of nitrogen using an injection machine (at the canopy height of 20 cm) and compared to conventional fertilization with calcium ammonium nitrate application at pre-sowing preparations. In all treatments the amount of nitrogen was the same, 140 kg N/ha. In 2010 at Humpolec site, CULTAN urea ammonium nitrate + inhibitor of nitrification treatment gave by 20.5% higher number of ears compared to CULTAN urea ammonium nitrate treatment. In 2011 at Ivanovice all CULTAN treatments reached statistically significantly higher number of kernels per ear. The higher 1000 kernel weight at CULTAN treatments was observed in 2012 at the Ivanovice site; a statistically significant difference between conventional and CULTAN urea ammonium nitrate + inhibitor of nitrification treatment was observed. Fertilization of maize with nitrogen using the CULTAN method under the conditions of the Czech Republic provides the same yield certainty as the conventional surface application and the CULTAN method of fertilization increases the yield certainty at delayed sowing. Harvest index was statistically significantly influenced by year, fertilization treatment and site.


1968 ◽  
Vol 8 (32) ◽  
pp. 301 ◽  
Author(s):  
JR Simpson

A comparison was made of the responses to, and nitrogen recoveries from, ammonium sulphate, sodium nitrate, and urea when broadcast on a ryegrass sward in a favourable growing season. A second comparison was made, in a drier season on the same sward, between ammonium sulphate, sodium nitrate, urea, calcium ammonium nitrate, and ammonium nitrate. In both comparisons urea was an inefficient source of nitrogen, but its efficiency depended on the time of application. Differences in the rainfall shortly after application probably caused this variation in efficiency, by affecting the amounts of ammonia lost to the atmosphere. With sources other than urea, variation in the length of time during which the fertilizer remained at the soil surface, awaiting effective rainfall and plant uptake, had little effect on the final recovery of nitrogen. Ammonium sulphate, calcium ammonium nitrate, and ammonium nitrate showed similar efficiencies during the relatively dry season in which they were compared. Sodium nitrate was the most efficient source in both seasons.


1976 ◽  
Vol 12 (2) ◽  
pp. 189-193 ◽  
Author(s):  
A. Hamid ◽  
G. Sarwar

SUMMARYThe effect of split application of N on the uptake of N by wheat from N15 labelled ammonium nitrate and urea was studied in the field. Nitrogen fertilizers were applied at 120 kg N/ha in a single application (at seeding); two split applications (at seeding and tillering); and six split applications (at seeding, tillering, boot, heading, flowering and the milky stage). Nitrogen applied in two splits was most productive for grain yield for both the N sources, but six split applications significantly increased the protein content in grain compared with single or two split applications. The utilization of N from ammonium nitrate in grain was significantly higher than from urea when applied in six split applications.


1979 ◽  
Vol 19 (99) ◽  
pp. 481 ◽  
Author(s):  
RJK Myers

The effect of nitrogen source and method of application on yield and N uptake of dryland grain sorghum was studied, using 15-nitrogen labelled fertilizers. The nitrogen sources were ammonium sulphate, ammonium nitrate and urea, and the methods were banded, mixed and split application, using a rate of 50 kg N ha-1 throughout. The experiment was conducted over two wet seasons, 1970-71 and 1971-72. Method of application increased yield and nitrogen uptake in the order banded > mixed > split. Source of nitrogen resulted in the order ammonium sulphate = ammonium nitrate > urea. In the drier season, urea behaved somewhat differently, i.e. banded urea > banded ammonium nitrate= banded ammonium sulphate. Calculation of percentage recovery in general confirmed these results. It was concluded that nitrogenous fertilizer is more effective when banded, and that urea was a less effective source of nitrogen than the two ammonium salts. The results obtained with 15-nitrogen revealed a significant treatment effect that was not apparent in non-tracer experiments namely, the poor performance of urea in the second year. Because of its greater sensitivity, and because it identifies the nitrogen derived from fertilizer, the 15-nitrogen technique has scope for use in field experiments comparing fertilizers and cultural techniques.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1334
Author(s):  
Niharika Rahman ◽  
Catarina Henke ◽  
Patrick J. Forrestal

The efficacy of the new nitrification inhibitor 3,4 dimethylpyrazol succinic acid (DMPSA) was tested with calcium ammonium nitrate (CAN) and ammonium sulphate (AS) fertilisers in an incubation experiment using a sandy loam soil and a sandy textured soil. The experiment was conducted over 80 days. For AS fertiliser, inclusion of DMPSA resulted in significantly less NO3−-N present after 19 days in both soils. In the case of CAN, inclusion of DMPSA resulted in significantly less NO3−-N present after 45 days in the sandy loam soil and after 30 days in the sandy soil. DMPSA is effective nitrification inhibitor when combined with CAN and AS, with a mean reduction of 61% and 58%, respectively, in the average daily nitrification rate over the study period. Over the 80-day incubation period in the sandy loam soil, only 35% NH4+-N was converted to NO3−-N for AS + DMPSA compared to 88% for AS. In the sandy soil, 92% NH4+-N was converted to NO3−-N for AS compared with only 9% for AS + DMPSA by day 80. The results demonstrate that DMPSA is an effective nitrification inhibitor when combined with CAN and AS.


1975 ◽  
Vol 15 (77) ◽  
pp. 823 ◽  
Author(s):  
MG Mason ◽  
WJ Toms

Wheat was grown for twelve successive years at three sites with five rates of nitrogen either as calcium ammonium nitrate, ammonium sulphate or urea applied each year to the same plots. There was a long term yield decline, with and without nitrogen, on the site at Wongan Hills, but not at Merredin or Beverley. At each of the three sites there was no indication of a need for higher rates of nitrogen fertilizers with time to maintain yields. At Wongan Hills and Merredin, yields were depressed in most years when the highest rate of ammonium sulphate was used each year. Grain protein contents were low and did not decrease with time.


Sign in / Sign up

Export Citation Format

Share Document