Effect of crop rotation and cropping history on net N mineralization dynamics of a clay loam soil

Author(s):  
Bin Zhang ◽  
Jingyi Li ◽  
Craig F. Drury ◽  
Alex L. Woodley ◽  
Xueming Yang

Estimating soil N mineralization is critical to being able to balance fertilizer N requirements and their environmental impacts. In this study, net N mineralization was examined in soils under different crop rotations with each phase of the rotation present every year with biologically-based incubations in 2011 and 2015. Net N mineralization was significantly different among treatments when the current crop was soybean and the effect was dependent upon the previous crop and the cropping sequence. In particular, net increases in inorganic N were greater when the previous crop was winter wheat with/without red clover than if it were corn, and greater for the first year of soybean compared to the second year for rotations with two consecutive years of soybean in the 2011 incubation. However, cropping history did not influence net soil N mineralization when the current crop was either corn, winter wheat, or winter wheat + red clover. In 2015, the presence of red clover in the rotation increased net N mineralization in all phases of the rotation. These results suggest both current and previous crops should be considered when estimating the N supplying capacity (net mineralization) of the soil. Net mineralizable N was found to be significantly correlated with total amino sugars (P < 0.001), glucosamine (P < 0.001), and galactosamine (P = 0.003), which suggests that amino sugars could be used as an indicator of the N supplying capacity of soil.

2021 ◽  
Vol 48 (2) ◽  
pp. 180-190
Author(s):  
Manal Al-Traboulsi ◽  
Brian Wilsey ◽  
Catherine Potvin

Abstract Increasing levels of atmospheric CO2 may change C and N dynamics in pasture ecosystems. The present study was conducted to examine the impact of four years of CO2 enrichment on soil and root composition and soil N transformation in natural pastureland. Plots of open-top growth chambers were continuously injected with ambient CO2 (350 µL L–1) and elevated CO2 (625 µL L–1). Soil cores exposed to ambient and elevated CO2 treatment were incubated and collected each year. Net N-mineralization rates in soil (NH4 +-N plus NO3ˉ–-N), in addition to total C and N content (%) of soil and root tissues were measured. Results revealed that elevated CO2 caused a significant reduction in soil NO3 (P < 0.05), however, no significant CO2 effect was found on total soil C and N content (%). Roots of plants grown under elevated CO2 treatment had higher C/N ratios. Changes in root C/N ratios were driven by changes in root N concentrations as total root N content (%) was significantly reduced by 30% (P < 0.05). Overall, findings suggest that the effects of CO2 enrichment was more noticeable on N content (%) than C content (%) of soil and roots; elevated CO2 significantly affected soil N-mineralization and total N content (%) in roots, however, no substantial change was found in C inputs in CO2-enriched soil.


2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2010 ◽  
Vol 26 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Dario A. Fornara ◽  
Richard Bardgett ◽  
Sibylle Steinbeiss ◽  
Donald R. Zak ◽  
Gerd Gleixner ◽  
...  

1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rodrick D. Lentz ◽  
Gary A. Lehrsch

The use of solid dairy manure for sugarbeet production is problematic because beet yield and quality are sensitive to deficiencies or excesses in soil N, and soil N availability from manure varies substantially depending on the year of application. Experimental treatments included combinations of two manure rates (0.33 and 0.97 Mg total N ha−1) and three application times, and non-manure treatments (control and urea fertilizer). We measured soil net N mineralization and biomass, N uptake, and yields for sprinkler-irrigated sugarbeet. On average, the 1-year-old, low-rate manure, and 1- and 2-year-old, high-rate manure treatments produced 1.2-fold greater yields, 1.1-fold greater estimated recoverable sugar, and 1.5-fold greater gross margins than that of fertilizer alone. As a group the 1-year-old, low-rate manure, and 2- and 3-year-old, high-rate-manure treatments produced similar cumulative net N mineralization as urea fertilizer; whereas the 1-year-old, high-rate manure treatment provided nearly 1.5-fold more N than either group. With appropriate manure application rates and attention to residual N and timing of sugarbeet planting, growers can best exploit the N mineralized from manure, while simultaneously maximizing sugar yields and profits.


Sign in / Sign up

Export Citation Format

Share Document