Empirical relationships between temperature and nitrogen availability across North American forests

1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rodrick D. Lentz ◽  
Gary A. Lehrsch

The use of solid dairy manure for sugarbeet production is problematic because beet yield and quality are sensitive to deficiencies or excesses in soil N, and soil N availability from manure varies substantially depending on the year of application. Experimental treatments included combinations of two manure rates (0.33 and 0.97 Mg total N ha−1) and three application times, and non-manure treatments (control and urea fertilizer). We measured soil net N mineralization and biomass, N uptake, and yields for sprinkler-irrigated sugarbeet. On average, the 1-year-old, low-rate manure, and 1- and 2-year-old, high-rate manure treatments produced 1.2-fold greater yields, 1.1-fold greater estimated recoverable sugar, and 1.5-fold greater gross margins than that of fertilizer alone. As a group the 1-year-old, low-rate manure, and 2- and 3-year-old, high-rate-manure treatments produced similar cumulative net N mineralization as urea fertilizer; whereas the 1-year-old, high-rate manure treatment provided nearly 1.5-fold more N than either group. With appropriate manure application rates and attention to residual N and timing of sugarbeet planting, growers can best exploit the N mineralized from manure, while simultaneously maximizing sugar yields and profits.


1994 ◽  
Vol 24 (8) ◽  
pp. 1636-1645 ◽  
Author(s):  
Charles T. Garten Jr. ◽  
Helga Van Miegroet

We tested the hypothesis that naturally occurring nitrogen (N) isotope ratios in foliage (from plants that do not symbiotically fix atmospheric N2) are an indicator of soil N dynamics in forests. Replicate plots were established at eight locations ranging in elevation from 615 to 1670 m in Great Smoky Mountains National Park in eastern Tennessee, U.S.A. The locations selected ranged from N-poor (low-elevation) to N-rich (high-elevation) forest stands. Soils were sampled in June 1992; plants, forest floors, and upper mineral soils were sampled in August 1992. Net N mineralization and net nitrification potentials for surface mineral soils and organic matter layers at each site were determined by aerobic laboratory incubations. Soils and organic layers from high-elevation sites had greater net N mineralization and nitrification potentials than soils from low-elevation sites. There were significant (P ≤ 0.05) differences between study sites in soil 15N abundance. Therefore, we examined correlations between measures of soil N availability and both mean foliar δ15N values and mean enrichment factors (εp−s = δ15Nleaf − δ15Nsoil). In evergreens, maples, and ferns, mean foliar δ15N values and mean enrichment factors were positively correlated with net N mineralization and net nitrification potentials in soil. The observed relationships between natural 15N abundance in plant leaves and soil N availability were explained by a simple model of soil N dynamics. The model predicts how the isotopic composition of plant N is affected by the following factors: (i) varying uptake of soil NH4-N and NO3-N, (ii) the isotopic composition of different soil N pools, and (iii) relative rates of soil N transformations.


1996 ◽  
Vol 26 (6) ◽  
pp. 1103-1111 ◽  
Author(s):  
Choonsig Kim ◽  
Terry L. Sharik ◽  
Martin F. Jurgensen ◽  
David S. Buckley ◽  
Richard E. Dickson

The nitrogen (N) status and dry weight increment of northern red oak (Quercusrubra L.) seedlings in relation to N availability were examined at various levels of canopy cover and understory removal treatments under field conditions in red oak and red pine (Pinusresinosa Ait.) stands. Net N mineralization rates over two growing seasons following canopy cover treatments were determined by the in situ buried bag technique. Canopy removal increased N mineralization in both oak and pine stands. Net N mineralization rates were ≈1.2–2.2 times higher in the clearcut and the other partial canopy cover treatments than in the uncut stands. Net N mineralization in the same canopy cover treatments was ≈2–3 times higher in red oak stands than in red pine stands. However, red oak seedlings from the same canopy cover treatments in both stand types had similar dry weight, N concentrations, N content, and N-use efficiency despite differences in soil N availability. The only exception was ≈2 times greater seedling dry weight and N content in the red oak clearcuts compared with the red pine clearcuts. The similarity in seedling performance within partial canopy removal or uncut stands may have been due to limiting factors other than N in the red oak stands. Red oak seedlings from litter removal treatments within the clearcuts had significantly higher N-use efficiency than those from the herb and shrub removal treatments. These results suggest that (i) canopy manipulation increases soil N availability; (ii) increases in dry weight and N uptake by red oak seedlings when forest canopies are completely removed are due, in part, to increased available soil N; (iii) red oak seedling response to soil N availability resulting from no or only partial canopy removal may be the same in different stand types (e.g., red oak vs. red pine) because factors other than N, such as light, are limiting.


1992 ◽  
Vol 22 (6) ◽  
pp. 915-918 ◽  
Author(s):  
G.F. Weetman ◽  
C E. Prescott ◽  
R.M. Fournier

The relationship between the amount of mineralizable N in mineral soil and the basal area response of trees to N fertilization was examined in 24 stands of lodgepole pine (Pinuscontorta var. latifolia Engelm.) in interior British Columbia. Plots received a single application of either NH4NO3 or urea between 1980 and 1983. Increment cores taken from trees on fertilized and control plots 4 years after fertilization were used to estimate basal area response of fertilized trees relative to controls. Amounts of N mineralized during a 1-week anaerobic incubation of mineral soil from control plots at each site were used as an estimate of N availability in each stand. The relationship between N availability and growth response of trees was weak, except that stands with mineralizable soil N greater than 40 ppm were not responsive to fertilization. Measurement of mineralizable soil N might be useful prior to screening trials to eliminate stands with very high levels of available N.


1983 ◽  
Vol 13 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Knute J. Nadelhoffer ◽  
John D. Aber ◽  
Jerry M. Melillo

Annual net N mineralization in the 0–10 cm mineral soil zone of nine forest stands on silt–loam soils was measured using a series of insitu soil incubations from April 1980 through April 1981. Differences in soil organic matter (SOM) dynamics among sites were shown with net N mineralization ranging from 0.54 to 2.10 mg N mineralized•g SOM−1•year−1. This variation was not related to percent N in SOM. Net N mineralization varied seasonally with maximum rates in June and very low rates in winter. Nitrification rates were constant from May through September despite fluctuations in soil ammonium pools. Nitrification was greater than 50% of annual net N mineralization at all sites. N uptake by vegetation, as estimated by net N mineralization plus mineral N inputs via precipitation, with minor corrections for mineralization below the incubation depth and for mineral N losses to groundwater, ranged from 40.3 to 119.2 kg N•ha−1•year−1. Annual leaf and needle litter production ranged from 2.12 to 4.17 Mg•ha−1•year−1 and was strongly correlated with N uptake (r = 0.938, P < 0.01). N returned in leaf litter was also correlated with N uptake (r = 0.755, P < 0.05). Important feedbacks may exist between N availability and litter quality and quantity.


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


1997 ◽  
Vol 77 (2) ◽  
pp. 161-166 ◽  
Author(s):  
C. A. Campbell ◽  
Y. W. Jamel ◽  
A. Jalil ◽  
J. Schoenau

We need an easy-to-use chemical index for estimating the amount of N that becomes available during the growing season, to improve N use efficiency. This paper discusses how producers may, in future, use crop growth models that incorporate indices of soil N availability, to make more accurate, risk-sensitive estimates of fertilizer N requirements. In a previous study, we developed an equation, using 42 diverse Saskatchewan soils, that related potentially mineralizable N (N0) to NH4N extracted with hot 2 M KCl (X), (i.e., N0 = 37.7 + 7.7X, r2 = 0.78). We also established that the first order rate constant (k) for N mineralization at 35°C is indeed a constant for arable prairie soils (k = 0.067 wk−1). We modified the N submodel of CERES-wheat to include k and N0 (values of N0 were derived from the hot KCl test). With long-term weather data (precipitation and temperature) as input, this model was used to estimate probable N mineralization during a growing season and yield of wheat (grown on fallow or stubble), in response to fertilizer N rates at Swift Current. The model output indicated that the amount of N mineralized in a growing season for wheat on fallow was similar to that for wheat on stubble, as we hypothesized. Further the model indicated that rate of fertilizer N had only minimal effect on N mineralized. We concluded that, despite the importance of knowing the Nmin capability of a soil, it is available water, initial levels of available N and rate of fertilizer N that are the main determinants of yield in this semiarid environment. The theoretical approach we have proposed must be validated under field conditions before it can be adopted for use. Key words: N mineralization, Hot KCl-NH4-N, potentially mineralizable N, CERES-wheat model


1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


2016 ◽  
Vol 13 (18) ◽  
pp. 5395-5403 ◽  
Author(s):  
Maya Almaraz ◽  
Stephen Porder

Abstract. There are many proxies used to measure nitrogen (N) availability in watersheds, but the degree to which they do (or do not) correlate within a watershed has not been systematically addressed. We surveyed the literature for intact forest or grassland watersheds globally, in which several metrics of nitrogen availability have been measured. Our metrics included the following: foliar δ15N, soil δ15N, net nitrification, net N mineralization, and the ratio of dissolved inorganic to organic nitrogen (DIN : DON) in soil solution and streams. We were particularly interested in whether terrestrial and stream based proxies for N availability were correlated where they were measured in the same place. Not surprisingly, the strongest correlation (Kendall's τ) was between net nitrification and N mineralization (τ  =  0.71, p < 0.0001). Net nitrification and N mineralization were each correlated with foliar and soil δ15N (p < 0.05). Foliar and soil δ15N were more tightly correlated in tropical sites (τ  =  0.68, p < 0.0001), than in temperate sites (τ  =  0.23, p  =  0.02). The only significant correlations between terrestrial- and water-based metrics were those of net nitrification (τ  =  0.48, p  =  0.01) and N mineralization (τ  =  0.69, p  =  0.0001) with stream DIN : DON. The relationship between stream DIN : DON with both net nitrification and N mineralization was significant only in temperate, but not tropical regions. To our surprise, we did not find a significant correlation between soil δ15N and stream DIN : DON, despite the fact that both have been used to infer spatially or temporally integrated N status. Given that both soil δ15N and stream DIN : DON are used to infer long-term N status, their lack of correlation in watersheds merits further investigation.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 894
Author(s):  
Xiaoqian Dan ◽  
Zhaoxiong Chen ◽  
Shenyan Dai ◽  
Xiaoxiang He ◽  
Zucong Cai ◽  
...  

Soil temperature change caused by global warming could affect microbial-mediated soil nitrogen (N) transformations. Gross N transformation rates can provide process-based information about abiotic–biotic relationships, but most previous studies have focused on net rates. This study aimed to investigate the responses of gross rates of soil N transformation to temperature change in a subtropical acidic coniferous forest soil. A 15N tracing experiment with a temperature gradient was carried out. The results showed that gross mineralization rate of the labile organic N pool significantly increased with increasing temperature from 5 °C to 45 °C, yet the mineralization rate of the recalcitrant organic N pool showed a smaller response. An exponential response function described well the relationship between the gross rates of total N mineralization and temperature. Compared with N mineralization, the functional relationship between gross NH4+ immobilization and temperature was not so distinct, resulting in an overall significant increase in net N mineralization at higher temperatures. Heterotrophic nitrification rates increased from 5 °C to 25 °C but declined at higher temperatures. By contrast, the rate of autotrophic nitrification was very low, responding only slightly to the range of temperature change in the most temperature treatments, except for that at 35 °C to 45 °C, when autotrophic nitrification rates were found to be significantly increased. Higher rates of NO3− immobilization than gross nitrification rates resulted in negative net nitrification rates that decreased with increasing temperature. Our results suggested that, with higher temperature, the availability of soil N produced from N mineralization would significantly increase, potentially promoting plant growth and stimulating microbial activity, and that the increased NO3− retention capacity may reduce the risk of leaching and denitrification losses in this studied subtropical acidic forest.


Sign in / Sign up

Export Citation Format

Share Document