Neodymium isotope geochemistry of felsic volcanic and intrusive rocks from the Yukon–Tanana Terrane in the Finlayson Lake Region, Yukon, Canada

2003 ◽  
Vol 40 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Stephen J Piercey ◽  
James K Mortensen ◽  
Robert A Creaser

Devonian–Mississippian felsic rocks from the Finlayson Lake region have variable geochemical and Nd isotopic characteristics that provide insights into the tectonic and metallogenic evolution of the Yukon–Tanana terrane (YTT), and the northern Cordillera. Late Devonian (~365–360 Ma) calc-alkaline and tholeiitic arc felsic rocks in the mafic-dominated Fire Lake unit yield εNd350 = –4.8 and +0.1, respectively, and have 1.49–1.94 Ga depleted mantle model ages (TDM). Devonian–Mississippian (~360–356 Ma) felsic volcanic (Kudz Ze Kayah unit, Wolverine succession) and intrusive rocks (Grass Lakes suite) associated with volcanogenic massive sulphide (VMS) deposits have εNd350 = –7.8 to –9.5 with TDM = 1.59–2.25 Ga. A granitoid sample from the Early Mississippian (~350–345 Ma) Simpson Range plutonic suite has εNd350 = –12.9 and TDM = 2.01 Ga, similar to previously reported values for this suite. The VMS-associated Grass Lakes suite of granitoids has higher high field strength element (HFSE) and rare-earth element (REE) contents, and higher Zr/Sc, Zr/TiO2, Nb/La, and Zr/La values relative to the Simpson Range plutonic suite; these geochemical features are similar to coeval VMS-associated felsic volcanic rocks in the Kudz Ze Kayah unit. The identification of similar HFSE–REE-enriched felsic volcanic and subvolcanic intrusive rocks may aid in delineating prospective regions for VMS mineralization in the YTT and other continental-margin arc to back-arc environments. The geochemical and Nd isotopic data for these YTT felsic rocks suggest that they reflect episodic mid-Paleozoic arc (Fire Lake unit; Simpson Range plutonic suite) and back-arc magmatism (Kudz Ze Kudz unit; Wolverine succession) built upon a transitional basement with variable, but significant, influence from evolved (Proterozoic) crustal materials.


2021 ◽  
Author(s):  
S J Piercey ◽  
J -L Pilote

New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.



Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-25
Author(s):  
Wen-Bin Jia ◽  
Guang-Sheng Yan ◽  
Xiao-Fei Yu ◽  
Yong-Sheng Li ◽  
Sandro Conticelli ◽  
...  

Detailed geochronological, geochemical, and Sr-Nd-Hf isotopic data are presented for early Paleozoic volcanic rocks in the Karadaban area from the northern Altyn region, NW China, with the aim to constrain their petrogenesis and tectonic implications. The Karadaban volcanic rocks show a bimodal distribution in composition, with rhyolite and basalt. The LA-ICP-MS zircon U-Pb age indicates that the volcanic rocks were erupted at 512 Ma. The mafic rocks are calc-alkaline, enriched in light rare earth elements (LREE) and large-ion lithophile elements (LILE; Ba and U) and depleted in high-field strength elements (HFSE; Nb and Ta). These features together with their depleted isotopic signature (initial87Sr/86Sr=0.70413–0.70817,εNdt=2.7to 3.7) suggest that they were likely derived from a depleted mantle source but mixed with crustal components while upwelling. The felsic rocks show an A-type affinity, with high alkalis and Rb/Sr and Ga/Al ratios; enriched in LILE (e.g., Rb, K, Th, U, and REE) and depleted in Ba, Sr, Nb, P, and Ti; and with fractionated REE patterns with strong negative Eu anomalies. The combination of the decoupling ofεNdtvalues (−2.5 to −6.3) andεHftvalues (+5.5 to +14.7) in the setting of subduction indicates that the felsic rocks were generated by partial melting of the juvenile crustal as a result of magma upwelling. The geochemical and Sr-Nd-Hf isotopic characteristics, coupled with regional geology, indicate that the formation of the Karadaban bimodal volcanic rocks involves an extensional regime associated with a subduction-related environment. The rifting of the back arc in response to the retreat of the subducting northern Altyn oceanic lithosphere may account for the Karadaban bimodal volcanic rocks.



1999 ◽  
Vol 36 (7) ◽  
pp. 1043-1059 ◽  
Author(s):  
C J Northrup ◽  
C Isachsen ◽  
S A Bowring

Data from the Point Lake area, central Slave craton, suggest an intimate tectonic and paleogeographic association between volcano-sedimentary supracrustal rocks and adjacent gneisses. Granite plutons and orthogneisses yield U-Pb zircon crystallization ages ranging from ca. 3230 to 2818 Ma. Numerous mafic dykes cut the gneisses, and two have been dated by U-Pb zircon geochronometry at 2673 ± 3 and 2690 ± 3 Ma, ages similar to those of volcanic rocks in the Point Lake greenstone belt. Although high-strain zones form the greenstone-gneiss in most places, a structural repetition of granite about 4 km east of Keskarrah Bay is cut by numerous mafic dykes and apparently overlain depositionally(?) by pillow basalt. Mafic volcanic and plutonic rocks from Point Lake have initial (2.7 Ga) εNd values ranging from about +2.2 to -6.3, significantly lower than the depleted mantle at that time. The Nd data suggest either derivation from a more isotopically evolved reservoir, or assimilation of crust similar to the granite gneiss at Point Lake. We infer from the presence of mafic dykes of appropriate age in the basement and the low initial εNd values of some pillow basalts that the volcanic sequence developed on the older granitic crust. The supracrustal rocks may have been deposited in a back-arc basin floored at least in part by attenuated continental material. Closure of the basin, bulk east-west shortening, and sinistral oblique or strike-slip faulting then obscured the original relations between the volcanic and gneissic rocks.



1998 ◽  
Vol 35 (3) ◽  
pp. 237-252 ◽  
Author(s):  
Joseph B Whalen ◽  
Neil Rogers ◽  
Cees R van Staal ◽  
Frederick J Longstaffe ◽  
George A Jenner ◽  
...  

Middle Ordovician felsic magmatism contemporaneous with Bathurst Camp Pb-Zn volcanogenic massive sulphide(VMS) deposits consists of strongly altered volcanic to subvolcanic rocks, belonging to the Tetagouche Group, and relativelyunaltered granitoid plutons, which are divided into northern, central, and southern groups within the Miramichi Highlands.Calc-alkalic felsic volcanic rocks and northern plus central plutons have EpsilonNd(T) values ranging from -8.2 to -1.9 and -4.0 to +0.3, respectively. They exhibit within-plate-type volcanic and transitional I- to A-type granite geochemical characteristics.Granitoid rock Delta18O values range from +8.0 to +10.1‰. Published granitoid rock Pb isotopic compositions overlapunpublished galena data from Bathurst VMS deposits. Field, geochemical, and isotopic evidence indicate that these volcanicand granitoids rocks are consanguineous and mainly derived from Proterozoic orolder infracrustal sources. Alkalic felsic volcanic rocks, and associated alkaline basaltic rocks, are more juvenile (EpsilonNd(T) = +3.2 to +4.2) and were possibly derivedfrom slightly enriched mantle sources. Southern plutons exhibit continental arc-type features. The felsic magmatism and VMS deposits likely formed in an Okinawa-type back-arc basin developed from rifting the Early Ordovician Popelogan continentalarc, of which the southern plutons are remnants. Correlations between pluton groups and volcanic formations indicate that felsic magmatism was erupted through and onto the Miramichi Group. As most felsic volcanic formations lack plutonicequivalents, the Tetagouche Group probably does not represent disrupted slices of an originally conformable stratigraphic section. This supports a model in which thrust slices juxtapose remnants of volcanic centres erupted at different locationswithin a back-arc basin.



2021 ◽  
Author(s):  
M J Manor ◽  
S J Piercey

The Finlayson Lake district in southeastern Yukon is composed of a Late Paleozoic arc-backarc system that consists of metamorphosed volcanic, plutonic, and sedimentary rocks of the Yukon-Tanana and Slide Mountain terranes. These rocks host >40 Mt of polymetallic resources in numerous occurrences and styles of volcanogenic massive sulphide (VMS) mineralization. Geochemical and isotopic data from these rocks support previous interpretations that volcanism and plutonism occurred in arc-marginal arc (e.g., Fire Lake formation) and continental back-arc basin environments (e.g., Kudz Ze Kayah formation, Wind Lake formation, and Wolverine Lake group) where felsic magmatism formed from varying mixtures of crust- and mantle-derived material. The rocks have elevated high field strength element (HFSE) and rare earth element (REE) concentrations, and evolved to chondritic isotopic signatures, in VMS-proximal stratigraphy relative to VMS-barren assemblages. These geochemical features reflect the petrogenetic conditions that generated felsic rocks and likely played a role in the localization of VMS mineralization in the district. Preliminary in situ zircon chemistry supports these arguments with Th/U and Hf isotopic fingerprinting, where it is interpreted that the VMS-bearing lithofacies formed via crustal melting and mixing with increased juvenile, mafic magmatism; rocks that were less prospective have predominantly crustal signatures. These observations are consistent with the formation of VMS-related felsic rocks by basaltic underplating, crustal melting, and basalt-crustal melt mixing within an extensional setting. This work offers a unique perspective on magmatic petrogenesis that underscores the importance of integrating whole-rock with mineral-scale geochemistry in the characterization of VMS-related stratigraphy.



2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.



2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.



2020 ◽  
Author(s):  
Evgenia Salin ◽  
Krister Sundblad ◽  
Yann Lahaye ◽  
Jeremy Woodard

<p>The Fröderyd Group constitutes a deformed volcanic sequence, which together with the 1834 Ma Bäckaby tonalites occurs as a xenolith, within the 1793-1769 Ma TIB 1b unit of the Transscandinavian Igneous Belt (TIB) in southern Sweden. The Bäckaby tonalites, together with coarse-grained clastic metasedimentary sequences of the Vetlanda Group, belong to the Oskarshamn-Jönköping Belt (OJB; Mansfeld et al., 1996). In turn, the Fröderyd Group was considered to be an older, probably Svecofennian, unit by Sundblad et al. (1997).</p><p>The Fröderyd Group is composed of ca. 80% mafic and ca. 20% felsic volcanic rocks, with subordinate carbonate units. Mafic rocks are represented by tholeiitic basalts and spilitized pillow lavas with MORB affinity.</p><p>In this study, a sample from a metamorphosed rhyolite, belonging to the Fröderyd Group, was dated at 1849.5±9.8 Ga U-Pb zircon age (LA-ICPMS). This age is significantly younger than the Svecofennian crust, which was formed from 1.92 to 1.88 Ga. Instead, it is coeval with the oldest TIB granitoid generation (TIB 0), which intruded into the southwestern margin of the Svecofennian Domain, but the Fröderyd Group is still the oldest crustal component southwest of the Svecofennian Domain.</p><p>Geochronological, petrographical studies and field observations have shown that the southern margin of the Svecofennian Domain was affected by ductile deformation shortly after the intrusion of the 1.85 Ga TIB granites (Stephens and Andersson, 2005). This took place during an intra- or back-arc rifting above a subduction boundary in a retreating mode and caused formation of augen gneisses and emplacement of 1847 Ga dykes into the TIB 0 granitoids. Rifting was followed by a collision of the rifted slab with the Svecofennian crust which is evidenced from emplacement of pegmatitic leucosomes during 1.83-1.82 Ga into the 1.85 Ga orthogneisses.</p><p>It is interpreted, that the Fröderyd Group was formed within an oceanic rifting environment, collided with the rifted Svecofennian slab and later amalgamated onto the Svecofennian Domain. The proposed geological evolution includes two deformation events during the period of ca. 1.85-1.82 Ga, which is in accordance with Röshoff (1975). Furthermore, it is evident that the Fröderyd Group was formed as a separate unit outside the Svecofennian Domain, although they have a common geological history.      </p><p>References</p><p>Mansfeld, J., 1996. Geological, geochemical and geochronological evidence for a new Palaeoproterozoic terrane in southeastern Sweden. Precambrian Res. 77, 91–103.</p><p>Röshoff, K., 1975. Some aspects of the Precambrian in south-eastern Sweden in the light of a detailed geological study of the Lake Nömmen area. Geologiska Föreningens i Stockholm Förhandlingar 97, 368–378.</p><p>Stephens, M.B. and Andersson, J., 2015. Migmatization related to mafic underplating and intra- or back-arc spreading above a subduction boundary in a 2.0–1.8 Ga accretionary orogen. Sweden. Precambrian Res. 264, 235–257.</p><p>Sundblad, K., Mansfeld, J. and Särkinen, M., 1997. Palaeoproterozoic rifting and formation of sulphide deposits along the southwestern margin of the Svecofennian Domain, southern Sweden. Precambrian Res. 182, 1–12.</p>



1987 ◽  
Vol 24 (12) ◽  
pp. 2551-2567 ◽  
Author(s):  
Osamu Ujike ◽  
A. M. Goodwin

Felsic magma petrogenesis was studied by analyzing 24 stratigraphically controlled Archean andesite-to-rhyolite lava flows of both tholeiitic and calc-alkalic affinity from the upper Noranda Subgroup, Quebec, using instrumental neutron activation and X-ray fluorescence techniques. The lavas have moderate values of [La/Yb]N (0.9–3.8) and low values of 100 × Th/Zr (~1). According to calculations following batch partial melting and Rayleigh fractional crystallization models, both the calc-alkalic and tholeiitic felsic volcanic rocks are probably products of shallow-level fractional crystallization of mafic parental magmas formed respectively by lower (~7 % for calc-alkalic) and higher (~14% for tholeiitic) degrees of partial melting of a primitive mantle source.Contribution to the magma genesis from plausible crustal materials was negligible. A back-arc-type diapirism is geochemically suggested for the tectonic model of origin of Noranda felsic magmas, in conformity with geological observations. Felsic volcanic rocks with compositions analogous to the studied samples exist in several other Archean terrains of the Canadian Shield, suggesting thereby that the late Archean sialic crust was at least in part produced by volcanic rocks ultimately derived from the primitive mantle.



Sign in / Sign up

Export Citation Format

Share Document