Contrasting seismic characteristics of three major faults in northwestern Canada

2005 ◽  
Vol 42 (6) ◽  
pp. 1223-1237 ◽  
Author(s):  
David B Snyder ◽  
Brian J Roberts ◽  
Steven P Gordey

The Lithoprobe Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) profiles crossed three major tectonic zones of the northwestern Canadian Shield and northern Canadian Cordillera that are diverse in age and in depth of penetration. The oldest (2630–2590 Ma), the Yellowknife River fault zone, formed as a strike-slip fault in a tensional strain regime. Reflector attenuation or truncations align vertically beneath the fault trace through much of the crust, implying a near-vertical fault plane. The youngest (60–10 Ma), the Tintina fault zone, produced cumulative dextral strike-slip displacements of 425 km, perhaps 800 km. Tomographic velocity and ray-trace models of reflection data indicate that several fault splays form a tectonic zone 30 km wide at the surface, but truncations of deeper crustal reflections suggest that the zone thins in the mid-crust and widens near the Moho. This apparent variable width versus depth of the Tintina fault is atypical of major strike-slip faults worldwide. The Teslin fault was an active terrane boundary during accretion of terranes onto North America. Observed reflection geometries indicate that the juxtapositions of highly contrasting metamorphic grades across the Teslin fault are confined to the upper crust along SNORCLE line 3, implying that the fault soles eastward into a mid-crustal detachment at the interpreted top of North American crust. The limited depth extent of the Teslin fault zone is similar to some models of the San Andreas fault and may result from their similar histories as convergent margin structures.

1981 ◽  
Vol 18 (4) ◽  
pp. 776-788 ◽  
Author(s):  
R. D. Hyndman ◽  
R. M. Ellis

A temporary array of land and ocean bottom seismograph stations was used to accurately locate microearthquakes on the Queen Charlotte fault zone, which occurs along the continental margin of western Canada. The continental slope has two steep linear sections separated by a 25 km wide irregular terrace at a depth of 2 km. Eleven events were located with magnitudes from 0.5 to 2.0, 10 of them beneath the landward one of the two steep slopes, some 5 km off the coast of the southern Queen Charlotte Islands. No events were located beneath the seaward and deeper steep slope. The depths of seven of these events were constrained by the data to between 9 and 21 km with most near 20 km. The earthquake and other geophysical data are consistent with a near vertical fault zone having mainly strike-slip motion. A model including a small component of underthrusting in addition to strike-slip faulting is suggested to account for the some 15° difference between the relative motion of the North America and Pacific plates from plate tectonic models and the strike of the margin. One event was located about 50 km inland of the main active zone and probably occurred on the Sandspit fault. The rate of seismicity on the Queen Charlotte fault zone during the period of the survey was similar to that predicted by the recurrence relation for the region from the long-term earthquake record.


Author(s):  
Alberto Gomes ◽  
Helder I. Chamin ◽  
Jos Teixeira ◽  
Paulo E. Fonseca ◽  
Lus C. Gama Pereira ◽  
...  

2021 ◽  
Author(s):  
Derek Neuharth ◽  
Sascha Brune ◽  
Anne Glerum ◽  
Chris Morley ◽  
Xiaoping Yuan ◽  
...  

Strike-slip faults are classically associated with pull-apart basins where continental crust is thinned between two laterally offset fault segments. Here we propose a subsidence mechanism to explain the formation of a new type of basin where no substantial segment offset or syn-strike-slip thinning is observed. Such “flexural strike-slip basins” form due to a sediment load creating accommodation space by bending the lithosphere. We use a two-way coupling between the geodynamic code ASPECT and surface processes code FastScape to show that flexural strike-slip basins emerge if sediment is deposited on thin lithosphere close to a strike-slip fault. These conditions were met at the Andaman Basin Central Fault, where seismic reflection data provide evidence of a laterally extensive flexural basin with a depocenter located parallel to the strike-slip fault trace.


2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Maruf M Mukti ◽  
Ilham Arisbaya ◽  
Haryadi Permana

This paper presents a review of several published seismic reflection and seismicity data and analyzes of high-resolution bathymetry data to revise the exact location and reveal detail characteristics of a strike-slip fault zone that formed the southernmost segment of the Sumatran Fault (SF). Previous works interpreted this fault segment as a horst structure to the south of a pull-apart basin. We observe a clear linear trace of dissected seafloor parallels to SF in the high-resolution bathymetric map. This structure extends from the south of a pull-apart basin in the northwest to the Sunda accretionary wedge farther southeast. This lineament exhibits a narrow valley and a linear ridge that in the subsurface are interpreted as negative and positive flower structures, respectively. The structure exhibits a vertical fault plane and appears to have deformed the accretionary wedge sediments and basement at depth. A cluster of shallow seismicity is observed along this NW-trending fault zone, indicating the activity of this zone. Here, we proposed this strike-slip fault as the Ujung Kulon Fault that marks the southeasternmost segment of the SF zone. This segment deformed the area of the Sumatra-Java forearc basin and terminated in accretionary wedge near the trench. The accumulated strain within UKF may trigger large earthquake in the future, close to the highly populated areas in the coast of Sumatra and Java.Keywords: Strike-slip fault, Sumatra Fault, Ujung Kulon Fault, segmentation, earthquake.


Eos ◽  
2000 ◽  
Vol 81 (28) ◽  
pp. 309 ◽  
Author(s):  
Ibrahim Çemen ◽  
Ergun Gökten ◽  
Baki Varol ◽  
Recep Kiliç ◽  
Volkan Özaksoy ◽  
...  

2015 ◽  
Author(s):  
A'ishah Kamaludin ◽  
Suhaylah Haron ◽  
Norazila M Yasin ◽  
Myint Win ◽  
Jyoti Shah Jaiswal ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document