Dynamics of rocky shores: Cretaceous, Pliocene, Pleistocene, and Recent, Baja California peninsula, Mexico

2006 ◽  
Vol 43 (8) ◽  
pp. 1229-1235 ◽  
Author(s):  
Jorge Ledesma-Vázquez ◽  
Rafael Hernández-Walls ◽  
Monique Villatoro-Lacouture ◽  
Rigoberto Guardado-France

Rocky shorelines provide an excellent record that can be used to interpret the environmental conditions prevailing in a particular area in time and space. Former rocky shores are first-rate indicators of sea-level position, and they provide important local to regional information on tectonics and neotectonics. In this paper, sedimentary units made of gravel-size clasts, interpreted as having been deposited on a rocky shore, provide data for the interpretation of the hydrodynamic conditions under which the units were deposited. A model is presented by which to evaluate the minimum wave height associated with rocky-shore deposits located on the Baja California peninsula, both on the Pacific and Gulf of California margins for Upper Cretaceous and Pliocene shoreface deposits and for a modern beach deposit. Elements considered under the application of the model are the average clast size and water depth assigned to each deposit based on an equation proposed by earlier workers in conjunction with Airy's linear theory. Results from the application of the model reflect the position of each deposit relative to sea level and the clast-size population for each deposit. Values calculated as minimum wave heights range from 3 m to more than 7 m. These are interpreted in the context of northern winter storms on the Pacific coast and tropical storms or hurricanes on the Gulf of California coast.

2006 ◽  
Vol 43 (8) ◽  
pp. 1149-1164 ◽  
Author(s):  
James M Eros ◽  
Markes E Johnson ◽  
David H Backus

Arroyo Blanco Basin on Isla Carmen preserves a 157 m thick, nearly complete record of Pliocene–Pleistocene history in the Gulf of California. Examples of rocky-shore geomorphology occur on all margins of this trapezoidal-shaped, 3.3 km2 basin. A shoreline is developed in low relief on Miocene andesite from the Comondú Group at the rear of the basin parallel to the long axis of the island. Two end walls trace normal faults that stayed active during the life of the basin and maintained steep rocky shores. The basin is 64% filled by calcarudite and calcarenite derived from crushed rhodolith debris. Other facies include shell beds and stringers of andesite conglomerate that define a 4°–6° ramp. The ramp expanded onshore through Pliocene time, based on a succession of overlapping range zones for 22 macrofossils typical of Lower through Upper Pliocene strata in the Gulf of California. The unconformity exposed 1 km inland at the rear of the basin is between Miocene volcanics and Pleistocene cap rock at an elevation of 170 m above sea level. Whole rhodoliths encrusted on andesite pebbles occur above this unconformity. Presumably, the older Miocene-Pliocene unconformity is buried beneath the ramp. Four marine terraces with sea cliffs notched in Pliocene limestone occur at elevations of 68, 58, 37, and 12 m. The 12 m terrace is associated regionally with the last interglacial epoch between 120 000 and 135 000 years ago. Juxtaposition of ramp and terrace features in the same exhumed basin supports a long history of gradual Pliocene subsidence followed by episodic Pleistocene uplift.


2021 ◽  
Vol 14 ◽  
pp. 117862212110107
Author(s):  
Polioptro F Martínez-Austria ◽  
José Alejandro Jano-Pérez

Climate change is one of the greatest threats that our civilization is facing because increases in extreme temperatures severely affect humans, the economy, and ecosystems. General circulation models, which adequately predict climate change around the world, are less accurate at regional levels. Therefore, trends must be locally assessed, particularly in regions such as the Baja California Peninsula, which is a thin mass of land surrounded by the Pacific Ocean and the Gulf of California. Herein, we discuss extreme temperature trends in the Baja California Peninsula and whether they are statistically significant based on the Spearman’s nonparametric statistical test. For these purposes, 18 weather stations covering the entire region were analyzed, revealing that maximum temperatures for the hottest months are rising at a rate that is consistent with the RCP 8.5 scenario. Changes in minimum temperatures were also analyzed.


1980 ◽  
Vol 13 (3) ◽  
pp. 346-364 ◽  
Author(s):  
Alan J. Woods

AbstractThree emergent marine terraces are prominent between Playa El Marron and Arroyo El Salinito and comprise the most extensive Pleistocene planation surfaces in central Baja California, Mexico. The deposits of the lowest terrace, the Tomatal, are 120,000 ± 20,000 yr old (Sangamonian?) while the absolute ages of the two higher and older terraces, the Andrés and Aeropuerto, are unknown. The Tomatal terrace is particularly well developed and comprises degraded sea cliffs, paleodunes, and lagoonal sequences. Shingle paleobeach ridges also occur locally and reflect shore progradation and tombolo formation. The Tomatal shoreline is nearly horizontal at 7 ± 1 m above present mean sea level, whereas the older Aeropuerto terrace has been tilted so that it decreases in elevation toward the southeast. Nonetheless, coastal tilting is not nearly as great as at many other localities in California and Baja California. This is despite the fact that the entire Baja California peninsula has been assumed to be tectonically unstable during the Pleistocene, primarily because of the forces generated by plate motion.


2018 ◽  
Vol 44 (3) ◽  
pp. 293-298
Author(s):  
Fernando R. Elorriaga-Verplancken ◽  
Patricia Meneses ◽  
Abraham Cárdenas-Llerenas ◽  
Wayne Phillips ◽  
Abel de la Torre ◽  
...  

Zootaxa ◽  
2021 ◽  
Vol 4965 (2) ◽  
pp. 375-384
Author(s):  
MICHEL E. HENDRICKX

Four species of squat lobsters were collected off the northwestern coast of the Baja California Peninsula, Mexico, during an exploratory survey of fishing resources. Janethogalathea californiensis, described from California was previously known from off the west coast of the Baja California Peninsula (two localities) and from the Gulf of California (three localities). Of the three species of Munida collected during the survey, M. tenella is recorded off the west coast of the Baja California Peninsula for the first time. These are the fourth record of M. hispida and the second record of M. quadrispina in western Mexico.


2021 ◽  
Author(s):  
Daniel R. Muhs

Abstract. The primary last interglacial, marine isotope substage (MIS) 5e records on the Pacific Coast of North America, from Washington (USA) to Baja California Sur (Mexico), are found in the deposits of erosional marine terraces. Warmer coasts along the southern Golfo de California host both erosional marine terraces and constructional coral reef terraces. Because the northern part of the region is tectonically active, MIS 5e terrace elevations vary considerably, from a few meters above sea level to as much as 70 m above sea level. The primary paleo-sea level indicator is the shoreline angle, the junction of the wave-cut platform with the former sea cliff, which forms very close to mean sea level. Most areas on the Pacific Coast of North America have experienced uplift since MIS 5e time, but the rate of uplift varies substantially as a function of tectonic setting. Chronology in most places is based on uranium-series ages of the solitary coral Balanophyllia elegans (erosional terraces) or the colonial corals Porites and Pocillopora (constructional reefs). In areas lacking corals, correlation to MIS 5e can sometimes be accomplished using amino acid ratios of fossil mollusks, compared to similar ratios in mollusks that also host dated corals. U-series analyses of corals that have experienced largely closed-system histories range from ~124 to ~118 ka, in good agreement with ages from MIS 5e reef terraces elsewhere in the world. There is no geomorphic, stratigraphic, or geochronology evidence for more than one high-sea stand during MIS 5e on the Pacific Coast of North America. However, in areas of low uplift rate, the outer parts of MIS 5e terraces apparently were re-occupied by the high-sea stand at ~100 ka (MIS 5c), evident from mixes of coral ages and mixes of molluscan faunas with differing thermal aspects. This sequence of events took place because glacial isostatic adjustment processes acting on North America resulted in regional high-sea stands at ~100 ka and ~80 ka that were higher than is the case in far-field regions, distant from large continental ice sheets. During MIS 5e time, sea surface temperatures (SST) off the Pacific Coast of North America were higher than is the case at present, evident from extralimital southern species of mollusks found in dated deposits. Apparently no wholesale shifts in faunal provinces took place, but in MIS 5e time, some species of bivalves and gastropods lived hundreds of kilometers north of their present northern limits, in good agreement with SST estimates derived from foraminiferal records and alkenone-based reconstructions in deep-sea cores. Because many areas of the Pacific Coast of North America have been active tectonically for much or all of the Quaternary, many earlier interglacial periods are recorded as uplifted, higher elevation terraces. In addition, from southern Oregon to northern Baja California, there are U-series-dated corals from marine terraces that formed ~80 ka, during MIS 5a. In contrast to MIS 5e, these terrace deposits host molluscan faunas that contain extralimital northern species, indicating cooler SST at the end of MIS 5. Here I present a standardized database of MIS 5e sea-level indicators along the Pacific Coast of North America and the corresponding dated samples. The database is available in Muhs (2021)  [https://doi.org/10.5281/zenodo.5557355].


Zootaxa ◽  
2021 ◽  
Vol 5051 (1) ◽  
pp. 117-150
Author(s):  
SAMUEL GÓMEZ ◽  
JOSÉ ANTONIO CRUZ-BARRAZA

At present, only 11 species of harpacticoid copepods have been described from the deep sea of the Gulf of California and the west coast of the Baja California Peninsula. These efforts had until recently been focused exclusively on the families Ameiridae Boeck, Argestidae Por, and Rhizothrichidae Por. Preliminary analyses revealed also an important contribution of the subfamily Stenheliinae Brady (Miraciidae Dana) to the overall species richness and diversity of deep-sea benthic copepods from the west coast of the Baja California Peninsula, and the central and southern Gulf of California. One new species of the genus Wellstenhelia Karanovic & Kim, 2014, We. euterpoides sp. nov., and one new genus and species, Wellstenvalia wellsi gen. et sp. nov., are herein described from sediment samples taken at eight sampling stations in the west coast of the Baja California Peninsula and in the central and southern Gulf of California. Wellstenhelia euterpoides sp. nov. seems to be closely related to We. euterpe Karanovic & Kim, 2014 with which it shares the reduced armature complement of the baseoendopod of the female fifth leg. The so far monotypic genus Wellstenvalia gen. nov. was found to be closely related to Muohuysia Özdikmen, 2009 and Wellstenhelia. Some comments on the relationships between the new genus proposed here and other stenheliin genera and species are provided as a contribution towards the monophyly of the subfamily.  


Author(s):  
Ana Luisa Carreño ◽  
Javier Helenes

Before middle Miocene times, Baja California was attached to the rest of the North American continent. Consequently, most of the terrestrial fauna and flora of the peninsula had its origins in mainland Mexico. However, the separation of the peninsula and its northwestward displacement resulted in a variety of distribution patterns, isolations, extinctions, origins and ultimate evolution of fauna and flora in several ways. The islands in the Gulf of California have been colonized by species from Baja California and mainland Mexico. Some workers (Soulé and Sloan 1966; Wilcox 1978) consider that many of these islands originated as landbridges. Geographically, most of the islands are closer to the peninsula than to the mainland. Therefore, it has been assumed that the Baja California Peninsula was the origin of most of the organisms inhabiting them (Murphy 1983). Islands separated by depths of 110 m or less from the peninsula or mainland Mexico apparently owe their current insular existence to a rise in sea level during the current interglacial period (Soulé and Sloan 1966). In contrast, little information exists for deep-water islands. Any complete analysis of the distribution and origin of several organic groups inhabiting the Gulf of California islands should involve the consideration of several contrasting models arguing in favor of or against the equilibrium theory (MacArthur and Wilson 1967). In any model, one of the most important features to consider is the relationship between the species inhabiting the gulf islands and the physical and geological processes of formation of the islands, as well as their age, size, and distance from either the peninsula or the mainland. Understanding colonization, migration, and distribution, particularly in some groups, requires information on whether a particular island was ever connected to a continental source. For example, to explain some characteristics of the populations of any island, which presumably had a recent (<10,000-15,000 years) connection to a continental source, it is necessary to evaluate the coastal erosion or the relative rise in the sea level. These factors might contribute to effectively isolating an insular habit or to forming landbridges.


Sign in / Sign up

Export Citation Format

Share Document