Chapter 4 Paleoproterozoic (2.0–1.8 Ga) syn-orogenic sedimentation, magmatism and mineralization in the Bothnia–Skellefteå lithotectonic unit, Svecokarelian orogen

2020 ◽  
Vol 50 (1) ◽  
pp. 83-130 ◽  
Author(s):  
Pietari Skyttä ◽  
Pär Weihed ◽  
Karin Högdahl ◽  
Stefan Bergman ◽  
Michael B. Stephens

AbstractThe Bothnia–Skellefteå lithotectonic unit is dominated by turbiditic wacke and argillite (Bothnian basin), deposited at 1.96 (or older)–1.86 Ga, metamorphosed generally under high-grade conditions and intruded by successive plutonic suites at 1.95–1.93, 1.90–1.88, 1.87–1.85 and 1.81–1.76 Ga. In the northern part, low-grade and low-strain, 1.90–1.86 Ga predominantly magmatic rocks (the Skellefte–Arvidsjaur magmatic province) are enclosed by the basinal components. Subduction-related processes in intra-arc basin and magmatic arc settings, respectively, are inferred. Changes in the metamorphic grade and the relative timing of deformation and structural style across the magmatic province are linked to major shear zones trending roughly north–south and, close to the southern margin, WNW–ESE. Zones trending WNW–ESE and ENE–WSW dominate southwards. Slip along the north–south zones in an extensional setting initiated synchronously with magmatic activity at 1.90–1.88 Ga. Tectonic inversion steered by accretion to a craton to the east, involving crustal shortening, ductile strain and crustal melting, occurred at 1.88–1.85 Ga. Deformation along shear zones under lower-grade conditions continued at c. 1.8 Ga. Felsic volcanic rocks (1.90–1.88 Ga) host exhalative and replacement-type volcanogenic massive sulphide deposits (the metallogenic Skellefte district). Other deposits include orogenic Au, particularly along the ‘gold line’ SW of this district, porphyry Cu–Au–Mo, and magmatic Ni–Cu along the ‘nickel line’ SE of the ‘gold line’.

2015 ◽  
Vol 42 (4) ◽  
pp. 437 ◽  
Author(s):  
Phillips C. Thurston

Greenstone belts are long, curvilinear accumulations of mainly volcanic rocks within Archean granite−greenstone terranes, and are subdivided into two geochemical types: komatiite−tholeiite sequences and bimodal sequences. In rare instances where basement is preserved, the basement is unconformably overlain by platform to rift sequences consisting of quartzite, carbonate, komatiite and/or tholeiite. The komatiite−tholeiite sequences consist of km-scale thicknesses of tholeiites, minor intercalated komatiites, and smaller volumes of felsic volcanic rocks. The bimodal sequences consist of basal tholeiitic flows succeeded upward by lesser volumes of felsic volcanic rocks. The two geochemical types are unconformably overlain by successor basin sequences containing alluvial–fluvial clastic metasedimentary rocks and associated calc-alkaline to alkaline volcanic rocks.   Stratigraphically controlled geochemical sampling in the bimodal sequences has shown the presence of Fe-enrichment cycles in the tholeiites, as well as monotonous thicknesses of tholeiitic flows having nearly constant MgO, which is explained by fractionation and replenishment of the magma chamber with fresh mantle-derived material. Geochemical studies reveal the presence of boninites associated with the komatiites, in part a result of alteration or contamination of the komatiites. Within the bimodal sequences there are rare occurrences of adakites, Nb-enriched basalts and magnesian andesites.    The greenstone belts are engulfed by granitoid batholiths ranging from soda-rich tonalite−trondhjemite−granodiorite to later, more potassic granitoid rocks. Archean greenstone belts exhibit a unique structural style not found in younger orogens, consisting of alternating granitoid-cored domes and volcanic-dominated keels. The synclinal keels are cut by major transcurrent shear zones.   Metamorphic patterns indicate that low pressure metamorphism of the greenstones is centred on the granitoid batholiths, suggesting a central role for the granitoid rocks in metamorphosing the greenstones. Metamorphic patterns also show that the proportion of greenstones in granite−greenstone terranes diminishes with deeper levels of exposure.   Evidence is presented on both sides of the intense controversy as to whether greenstone belts are the product of modern plate tectonic processes complete with subduction, or else the product of other, lateral tectonic processes driven by the ‘mantle wind.’ Given that numerous indicators of plate tectonic processes – structural style, rock types, and geochemical features − are unique to the Archean, it is concluded that the evidence is marginally in favour of non-actualistic tectonic processes in Archean granite−greenstone terranes.RÉSUMÉLes ceintures de roches vertes sont des accumulations longiformes et curvilinéaires, principalement composées de roches volcaniques au sein de terranes granitique archéennes,  et étant subdivisées en deux types géochimiques: des séquences à komatiite–tholéite et des séquences bimodales. En de rares occasions, lorsque le socle est préservé, ce dernier est recouvert en discordance par des séquences de plateforme ou de rift, constituées de quartzite, carbonate, komatiite et/ou de tholéiite. Les séquences de komatiite-tholéiite forment des épaisseurs kilométriques de tholéiite, des horizons mineurs de komatiites, et des volumes de moindre importance de roches volcaniques felsiques. Les séquences bimodales sont constituées à la base, de coulées tholéiitiques surmontées par des volumes mineurs de roches volcaniques felsiques. Ces deux types géochimiques sont recouverts en discordance par des séquences de bassins en succession contenant des roches métasédimentaires clastiques fluvio-alluvionnaires associées à des roches volcaniques calco-alcalines à alcalines.   Un échantillonnage à contrôle stratigraphique des séquences bimodales a révélé la présence de cycles d’enrichissement en Fe dans les tholéiites, ainsi que des épaisseurs continues d’épanchements tholéiitiques ayant des valeurs presque constante en  MgO, qui s’explique par la cristallisation fractionnée et le réapprovisionnement de la chambre magmatique par du matériel mantélique. Les études géochimiques montrent la présence de boninites associées aux komatiites, résultant en partie de l’altération ou de la contamination des komatiites. Au sein des séquences bimodales, on retrouve en de rares occasions des adakites, des basaltes enrichis en Nb et des andésites magnésiennes.   Les ceintures de roches vertes sont englouties dans des batholites granitoïdes de composition passant des tonalites−trondhjémites−granodiorites enrichies en sodium, à des roches granitoïdes tardives plus potassiques. Les ceintures de roches vertes archéennes montrent un style structural unique que l’on ne retrouve pas dans des orogènes plus jeunes, et qui est constitué d’alternances de dômes à cœur granitoïdes et d`affaissements principalement composés de roches volcaniques. Les synclinaux formant les affaissements sont recoupés par de grandes zones de cisaillement.   Les profils métamorphiques indiquent que le métamorphisme de basse pression des roches vertes est centré sur les batholites, indiquant un rôle central des roches granitoïdes durant le métamorphisme des roches vertes. Les profils métamorphiques montrent également que la proportion de roches vertes dans les terranes granitiques diminue avec l’exposition des niveaux plus profonds.   On présente les arguments des deux côtés de l’intense controverse voulant que les ceintures de roches vertes soient le produit de processus moderne de la tectonique des plaques incluant la subduction, ou alors le produit d’autres processus tectoniques découlant du « flux mantélique ». Étant donné la présence des indicateurs des processus de tectonique des plaques – style structural, les types de roches, et les caractéristiques géochimiques – ne se retrouvent qu’à l’Archéen, nous concluons que les indices favorisent légèrement l’option de processus tectoniques non-actuels dans les terranes granitiques de roches vertes à l’Archéen.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Hanzhi Chen ◽  
Mingcai Hou ◽  
Fuhao Xiong ◽  
Hongwei Tang ◽  
Gangqiang Shao

Miocene felsic magmatic rocks with high Sr/Y ratios are widely distributed throughout the Gangdese belt of southern Tibet. These provide a good opportunity to explore the magmatic process and deep dynamic mechanisms that occurred after collision between the Indo and the Asian plates. In this paper, felsic volcanic rocks from the Zongdangcun Formation in the Wuyu Basin in the central part of the southern Gangdese belt are used to disclose their origin. Zircon U-Pb geochronology analysis shows that the felsic magmatism occurred at ca. 10.3 ± 0.2 Ma, indicating that the Zongdangcun Formation formed during the Miocene. Most of these felsic magmatic rocks plot in the rhyolite area in the TAS diagram. The rhyolite specimens from the Zongdangcun Formation have the characteristics of high SiO2 (>64%), K2O, SiO2, and Sr contents, a low Y content and a high Sr/Y ratio, and the rocks are rich in LREE and depleted in HREE, showing geochemical affinity to adakitic rocks. The rocks have an enriched Sr-Nd isotopic composition (εNd(t) = −6.76 to −6.68, (87Sr/86Sr)i = 0.7082–0.7088), which is similar to the mixed product of the juvenile Lhasa lower continental crust and the ancient Indian crust. The Hf isotopes of zircon define a wide compositional range (εHf(t) = −4.19 to 6.72) with predominant enriched signatures. The Miocene-aged crustal thickness in southern Tibet, calculated on the basis of the Sr/Y and (La/Yb)N ratios was approximately 60–80 km, which is consistent with the thickening of the Qinghai-Tibet Plateau. The origin of Miocene felsic magmatic rocks with high Sr/Y ratios in the middle section of the Gangdese belt likely involved a partial melting of the thickened lower crust, essentially formed by the lower crust of the Lhasa block, with minor contribution from the ancient Indian crust. After comprehensively analyzing the post-collisional high Sr/Y magmatic rocks (33–8 Ma) collected from the southern margin of the Gangdese belt, we propose that the front edge tearing and segmented subduction of the Indian continental slab may be the major factor driving the east-west trending compositional changes of the Miocene adakitic rocks in southern Tibet.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


2020 ◽  
pp. 467-495
Author(s):  
T. Baker ◽  
S. Mckinley ◽  
S. Juras ◽  
Y. Oztas ◽  
J. Hunt ◽  
...  

Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.


2019 ◽  
Vol 109 (1) ◽  
pp. 101-125 ◽  
Author(s):  
Máté Szemerédi ◽  
Réka Lukács ◽  
Andrea Varga ◽  
István Dunkl ◽  
Sándor Józsa ◽  
...  

AbstractTwo distinct Permian volcanic epochs were revealed in the Pannonian Basin (eastern Central Europe) by U–Pb zircon geochronology: an older one (~ 281 Ma, Cisuralian) in the ALCAPA Mega-unit (Central Transdanubia, Hungary) and a younger volcanic episode (~ 267–260 Ma, Guadalupian) in the Tisza Mega-unit (Southern Transdanubia and the eastern Pannonian Basin, Hungary). The former is represented by dacitic subvolcanic rocks (dykes) and lavas, while the latter is dominantly by crystal-rich rhyolitic–rhyodacitic/dacitic ignimbrites and subordinate rhyodacitic/dacitic lavas. Whole-rock (major and trace element) geochemical data and zircon U–Pb ages suggest close relationship between the samples of Central Transdanubia and volcanic rocks of the Northern Veporic Unit (Western Carpathians, Slovakia), both being part of the ALCAPA Mega-unit. Such correlation was also revealed between the Permian felsic volcanic rocks of the Apuseni Mts (Romania) and the observed samples of Southern Transdanubia and the eastern Pannonian Basin that are parts of the Tisza Mega-unit. The older volcanic rocks (~ 281–265 Ma) could be linked to post-orogenic tectonic movements, however, the youngest samples (~ 260 Ma, eastern Pannonian Basin, Tisza Mega-unit) could be formed in the extensional setting succeeding the post-collisional environment. On the whole, the observed Permian magmatic rocks show significant similarity with those of the Western Carpathians.


2020 ◽  
Vol 50 (1) ◽  
pp. 27-81 ◽  
Author(s):  
Stefan Bergman ◽  
Pär Weihed

AbstractTwo lithotectonic units (the Norrbotten and Överkalix units) occur inside the Paleoproterozoic (2.0–1.8 Ga) Svecokarelian orogen in northernmost Sweden. Archean (2.8–2.6 Ga and possibly older) basement, affected by a relict Neoarchean tectonometamorphic event, and early Paleoproterozoic (2.5–2.0 Ga) cover rocks constitute the pre-orogenic components in the orogen that are unique in Sweden. Siliciclastic sedimentary rocks, predominantly felsic volcanic rocks, and both spatially and temporally linked intrusive rock suites, deposited and emplaced at 1.9–1.8 Ga, form the syn-orogenic component. These magmatic suites evolved from magnesian and calc-alkaline to alkali–calcic compositions to ferroan and alkali–calcic varieties in a subduction-related tectonic setting. Apatite–Fe oxide, including the world's two largest underground Fe ore mines (Kiruna and Malmberget), skarn-related Fe oxide, base metal sulphide, and epigenetic Cu–Au and Au deposits occur in the Norrbotten lithotectonic unit. Low- to medium-pressure and variable temperature metamorphic conditions and polyphase Svecokarelian ductile deformation prevailed. The general northwesterly or north-northeasterly structural grain is controlled by ductile shear zones. The Paleotectonic evolution after the Neoarchean involved three stages: (1) intracratonic rifting prior to 2.0 Ga; (2) tectonic juxtaposition of the lithotectonic units during crustal shortening prior to 1.89 Ga; and (3) accretionary tectonic evolution along an active continental margin at 1.9–1.8 Ga.


Petrology ◽  
2008 ◽  
Vol 16 (5) ◽  
pp. 422-447 ◽  
Author(s):  
T. V. Donskaya ◽  
E. V. Bibikova ◽  
D. P. Gladkochub ◽  
A. M. Mazukabzov ◽  
T. B. Bayanova ◽  
...  

1992 ◽  
Vol 29 (3) ◽  
pp. 388-417 ◽  
Author(s):  
Andreas G. Mueller

The Norseman mining district in the Archean Yilgarn Block, Western Australia, has produced 140 t of gold and about 90 t of silver from 11.24 × 106 t of ore. The district is located within a metamorphic terrane of mafic and minor ultramafic greenstones, intruded by granite cupolas and swarms of porphyry dykes. The orebodies consist of laminated quartz veins, controlled by narrow (0.5–5 m) reverse shear zones that, in general, follow the contacts of metapyroxenite or porphyry dykes. Petrological studies of four shear zones, exposed on the Regent shaft 14 level, Ajax shaft 10 level, and in the stope above the North Royal shaft 5 level, show that the host rocks were metamorphosed to hornblende–plagioclase amphibolites and actinolite–chlorite rocks at temperatures of 500–550 °C prior to mineralization.At the localities studied, intense wall-rock replacement and low-grade (0.5 g/t) gold mineralization are confined to ductile or brittle–ductile shear structures. Alteration is similar in both ultramafic and mafic greenstones, and consists of an inner zone of biotite–quartz–calcite–plagioclase rock with minor actinolitic hornblende and quartz–calcite–actinolite veinlets, and an outer zone, locally developed, of chlorite–calcite–quartz rock. At an estimated pressure of 3 kbar (300 MPa), fluid temperatures during wall-rock alteration are constrained by the hydrothermal mineral assemblages to 480 ± 30 °C in two shear zones on the Regent shaft 14 level, and to 450 ± 20 °C in one shear zone in the North Royal shaft 5 level stope. The mole fraction of CO2 of the fluids is estimated at [Formula: see text], and the sulphur fugacity at 10−6 bar (10−1 kPa) (at 450 °C), based on the assemblage pyrrhotite + pyrite ± arsenopyrite. The development of an outer chloritic alteration zone at North Royal is related to the lower fluid temperature at this locality.High-grade (up to 75 g/t Au, 283 g/t Ag) veins formed within three of the shear zones studied at fluid temperatures of 400 °C and less, by the successive accretion of quartz laminae, separated by films of retrograde chlorite and sericite. The assemblage of ore minerals in the veins differs from that in the altered wall rocks, and includes disseminated galena, Pb–Bi–Ag tellurides, and native gold, which coprecipitated with the quartz. The orebodies at Norseman show affinities to Phanerozoic and Archean gold skarn deposits.


2006 ◽  
Vol 43 (7) ◽  
pp. 749-765 ◽  
Author(s):  
S Lin ◽  
D W Davis ◽  
E Rotenberg ◽  
M T Corkery ◽  
A H Bailes

The study of lithology, geochronology, and structure in the Oxford–Stull terrane, in particular in the Gods Lake Narrows area, has led to the recognition of three distinct supracrustal sequences: ~2.8–2.9 Ga volcanic rocks; a ~2720 Ma fault-bounded package of volcanics and sandstones; and ~2705 Ma conglomerate and alkaline volcanic rocks of the Oxford Lake Group. Detrital zircon as old as 3647 Ma is present in the Oxford Lake Group. An early generation of folding and shearing occurred prior to deposition of the Oxford Lake Group and was probably synchronous with emplace ment of 2721 Ma tonalite dykes. The second generation of deformation caused south-over-north thrusting of volcanic rocks over the Oxford Lake Group. The youngest fabric resulted from east-southeast-trending, dextral, south-over-north shearing. The youngest rock dated in the area is the 2668 ± 1 Ma Magill Lake pluton, which records crustal melting following deformation. The pattern of sedimentation and deformation in this area is similar to but slightly older than that found in the southern half of the Superior Province, which shows a southward-younging diachroneity. The south-dipping north-vergent shear zones observed in the area contrast with dominantly north-dipping south-vergent structures observed and interpreted south of the North Caribou superterrane (NCS). The limited size of the study area precludes any strongly based large-scale tectonic interpretation; however, data and observations from the Gods Lake Narrows area are most easily accommodated in a model where the NCS served as a nucleus onto which other terranes were accreted and both the northern and southern margins of the NCS were Andean-type continental margins with opposite subduction polarities.


1993 ◽  
Vol 30 (7) ◽  
pp. 1505-1520 ◽  
Author(s):  
Thomas Skulski ◽  
Robert P. Wares ◽  
Alan D. Smith

The New Québec orogen contains two volcano-sedimentary sequences bounded by unconformities. Each sequence records a change from continental sedimentation and alkaline volcanism to marine sedimentation and tholeiitic volcanism. The first sequence records 2.17 Ga rifting and the development, by 2.14 Ga, of a passive margin along the eastern part of the Superior craton. The second sequence developed between 1.88 and 1.87 Ga in pull-apart basins that reflect precollisional dextral transtension along the continental margin. Second-sequence magmatism comprises (i) carbonatitic and lamprophyric intrusions and mildly alkaline mafic to felsic volcanic rocks; (ii) widespread intrusion of tholeiitic gabbro sills, and submarine extrusion of plagioclase glomeroporphyritic basalts and younger aphyric basalts and picrites; and (iii) late-stage, mafic to felsic volcanism and intrusion of carbonatites. Crustal thinning allowed primitive tholeiitic magmas to equilibrate at progressively lower pressures before more buoyant derivative liquids could erupt. Early primitive melts were trapped at the base of the crust and crystallized olivine and orthopyroxene with minor crustal contamination. Derivative melts, similar to transitional mid-ocean-ridge basalts, migrated upward into mid-crustal magma chambers where they became saturated in calcic plagioclase. Subsequent tapping of these magma chambers allowed plagioclase ultraphyric magmas to intrude the sedimentary pile and erupt on the sea floor. Prolonged lithospheric extension resulted in more voluminous mantle melting and eruption of picrites and basalts in the south. Primitive magmas in the north were trapped beneath thicker crust and crystallized wehrlite cumulates. Resulting basaltic melts intruded the volcano-sedimentary pile, or erupted as aphyric basalts.


Sign in / Sign up

Export Citation Format

Share Document