Structural history and granite emplacement in the Rottenstone Domain during closure of the Trans-Hudson Orogen, Davin Lake, northern Saskatchewan

2009 ◽  
Vol 46 (4) ◽  
pp. 287-306 ◽  
Author(s):  
Nicholas G. Culshaw ◽  
D. Barrie Clarke

The Rottenstone Domain at Davin Lake northern Saskatchewan, exhibits structural and granite-emplacement evidence for crustal thickening, and possible Himalayan-style extrusion, overprinted by transpressional strain increasing toward the contact with the Wathaman Batholith. Three discrete Rottenstone subdomains parallel the regional strike of the Trans-Hudson Orogen: (i) the southeast Rottenstone subdomain (SERSD) with gently northwest-dipping migmatitic straight gneiss (S1) and white granitoid rocks with pinch-and-swell structures parallel to the straight gneissosity; (ii) the central Rottenstone subdomain (CRSD), which partly preserves the same NW-dipping fabric (S1) but is overprinted at its margins by tight upright F2 folds and includes a stockwork of pink monzogranitic aplites and pegmatites; and (iii) the northwest Rottenstone subdomain (NWRSD) in which the F2 folds are generally tighter and penetrative and its network of narrow white granitoid rocks is deformed and transposed by the F2 folds; but in the northwestern part, a wide, syn-D2 complex of schlieric white tonalitic and diatexite sheets strikes parallel the orogen. The SERSD D1 straight zone may be a remnant of Himalayan-type extrusion zone although it could be the lowest member of a stack of ductile thrust sheets. The CRSD stockwork may represent fluid-assisted magma injection into extensional fractures above the postulated extrusion zone. The increasing transpressional strain northwestward expressed primarily by the F2 folds in CRSD and NWRSD defines the Davin Lake shear zone, into which the NWRSD granitoid dyke complex represents syntectonic magma injection. Both the postulated extrusion and transpression are related to oblique convergence of the Archean Sask craton with the Archean Rae–Hearne craton.


2016 ◽  
Author(s):  
Bart T. Cubrich ◽  
◽  
Kevin R. Chamberlain ◽  
Ernest Duebendorfer ◽  
Michael L. Williams ◽  
...  


2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.



Author(s):  
Sheng Wang ◽  
Yingde Jiang ◽  
Roberto Weinberg ◽  
Karel Schulmann ◽  
Jian Zhang ◽  
...  

Flow of partially molten crust is a key contributor to mass and heat redistribution within orogenic systems, however, this process has not yet been fully understood in accretionary orogens. This issue is addressed in a Devonian migmatite-granite complex from the Chinese Altai through structural, petrological, and geochronological investigations presented in this study. The migmatite-granite complex records a gradual evolution from metatexite, diatexite to granite and preserves a record of two main Devonian phases of deformation designated D1 and D2. The D1 phase was subdivided into an early crustal thickening episode (D1B) and a later extensional episode (D1M) followed by D2 upright folding. The D1M episode is associated with anatexis in the deep crust. Vertical shortening, associated with D1M, gave rise to the segregation of melt and formation of a sub-horizontal layering of stromatic metatexite. This fabric was reworked by the D2 deformation associated with the migration of anatectic magma in the cores of F2 antiforms. Geochronological investigations combined with petro-structural analysis reveal that: (1) D1M partial melting started probably at 420−410 Ma and formed sub-horizontal stromatic metatexites at ∼30 km depth; (2) The anatectic magma accumulated and migrated when a drainage network developed, as attested by the pervasive formation of massive diatexite migmatites, at 410−400 Ma; (3) Soon after, massive flow of the partially molten crust from orogenic lower to orogenic upper crustal levels, assisted by the interplay between D2 upright folding and magma diapirism, led to migmatite-granite emplacement in the cores of regional F2 antiforms that lasted until at least 390 Ma; (4) a terminal stage was manifested by the emplacement of 370−360 Ma granite dykes into the surrounding metamorphic envelope. We propose that Devonian anatexis assisted by deformation governed first the horizontal and then the vertical flow of partially molten orogenic lower crust, which drove crustal flow, mass redistribution, and crustal differentiation in the accretionary system of the Chinese Altai.



Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
Guochun Zhao ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

In worldwide orogenic belts, crustal-scale ductile shear zones are important tectonic channels along which the orogenic root (i.e., high-grade metamorphic lower-crustal rocks) commonly experienced a relatively quick exhumation or uplift process. However, their tectonic nature and geodynamic processes are poorly constrained. In the Trans−North China orogen, the crustal-scale Zhujiafang ductile shear zone represents a major tectonic boundary separating the upper and lower crusts of the orogen. Its tectonic nature, structural features, and timing provide vital information into understanding this issue. Detailed field observations showed that the Zhujiafang ductile shear zone experienced polyphase deformation. Variable macro- and microscopic kinematic indicators are extensively preserved in the highly sheared tonalite-trondhjemite-granodiorite (TTG) and supracrustal rock assemblages and indicate an obvious dextral strike-slip and dip-slip sense of shear. Electron backscattered diffraction (EBSD) was utilized to further determine the crystallographic preferred orientation (CPO) of typical rock-forming minerals, including hornblende, quartz, and feldspar. EBSD results indicate that the hornblendes are characterized by (100) <001> and (110) <001> slip systems, whereas quartz grains are dominated by prism <a> and prism <c> slip systems, suggesting an approximate shear condition of 650−700 °C. This result is consistent with traditional thermobarometry pressure-temperature calculations implemented on the same mineral assemblages. Combined with previously reported metamorphic data in the Trans−North China orogen, we suggest that the Zhujiafang supracrustal rocks were initially buried down to ∼30 km depth, where high differential stress triggered the large-scale ductile shear between the upper and lower crusts. The high-grade lower-crustal rocks were consequently exhumed upwards along the shear zone, synchronous with extensive isothermal decompression metamorphism. The timing of peak collision-related crustal thickening was further constrained by the ca. 1930 Ma metamorphic zircon ages, whereas a subsequent exhumation event was manifested by ca. 1860 Ma syntectonic granitic veins and the available Ar-Ar ages of the region. The Zhujiafang ductile shear zone thus essentially record an integrated geodynamic process of initial collision, crustal thickening, and exhumation involved in formation of the Trans−North China orogen at 1.9−1.8 Ga.



2016 ◽  
Vol 46 (suppl 1) ◽  
pp. 5-35 ◽  
Author(s):  
Umberto Giuseppe Cordani ◽  
Kei Sato ◽  
Walter Sproessner ◽  
Fabiana Santos Fernandes

ABSTRACT: Here we report the results of several U-Pb zircon ages, made to generate an integrated history for the Rio Negro-Juruena tectonic province, for the northwestern part of the Amazonian Craton. This region comprises granitoid rocks, described as calc-alkaline syntectonic gneisses, granites and migmatites, affected by medium level amphibolite facies metamorphism. The new measurements, with the available Rb-Sr and K-Ar ages, indicate the formation of these rocks within a series of essentially juvenile magmatic arcs, that are closely related with subduction. Sm-Nd analyses indicate that all samples, regardless of their zircon ages, yielded TDM model ages roughly between 1.9 and 2.2 Ga, suggesting the absence of a much older source material. In the northeastern part (areas of Puerto Inírida and San Carlos), the Atabapo belt comprises rocks formed within a period of about 60 Ma, from 1800 to 1740 Ma. In the southwestern region, including the towns of Mitú and Iauaretê, the granitoids formed in the Vaupés belt between 1580 and 1520 Ma. Finally, the available K-Ar measurements indicate the onset of the Nickerie-K'Mudku intraplate heating event, with temperature above 300oC within the entire region at 1200 - 1300 Ma.



Geologos ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 31-57 ◽  
Author(s):  
Batoul Taghipour ◽  
Farhad Ahmadnejad

Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385°C and Tm from -11 to -16°C. Type III three-phase carbonic-liquid inclusions (liquid water-liquid CO2-vapour CO2) with Th of 345-385°C. The mean values of the density of ore-forming fluids, pressure and depth of mineralisation have been calculated to be 0.79-0.96 gr/cm3, 2 kbar and 7 km, respectively. The δ18Owater and δD values of the gold-bearing quartz-sulphide veins vary from 7.2‰ to 8‰ and -40.24‰ to -35.28‰, respectively, which are indicative of an isotopically heavy crustal fluid and likely little involvement of meteoric fluid. The δ18Owater values of the quartz-calcite veins have a range of -5.31‰ to -3.35‰, and the δD values of -95.65‰ to -75.31‰, which are clearly lower than those of early-stage quartz-sulphide-gold veins, and are close to the meteoric water line. Based on comparisons of the D-O isotopic systematics, the Qolqoleh ore-mineralising fluids originated from metamorphic devolatilisation of Cretaceous volcano-sedimentary piles. Devolatilisation of these units occurred either synchronously with, or postdates, the development of penetrative (ductile) structures such as shear zones and during overprinting brittle deformation



2005 ◽  
Vol 42 (10) ◽  
pp. 1907-1925 ◽  
Author(s):  
N Culshaw

Low-plunging, transport-parallel F3 folds are common at all scales in the Central Gneiss Belt of the Grenville Province, but few of these folds are sheath folds. Where the D1–D2 Parry Sound shear zone intersects the D3 Shawanaga shear zone (SSZ) at a high angle, F3 folds formed at several scales (centimetre to greater than outcrop scale) in layered D1–D2 "straight" gneisses. At the start of their evolution, the F3 folds formed just beyond the SSZ with hinges near orthogonal to the D3 shear direction and with typical buckle features, e.g., wavelengths vary with layer thickness, and hinges are discontinuous and bifurcate. The buckle folds evolved within the SSZ by rotation of hinges towards the shear direction. Even though hinges initiated at a high angle to the shear direction, sheath folds were not produced. In addition to tightening the buckles, the ductile reorientation produced thin–thick (extended–shortened) limb pairs and very straight, ridge-like fold hinges and removed small folds from the extended limbs of larger folds. Such features may serve as criteria to distinguish transport-parallel folds that initiated in layering at high angles to the shear direction from those formed in layers containing the shear direction. A general shear parallel to the SSZ can reproduce several features inferred to mark stages in the progressive reorientation of the folds; the pure shear component of the general shear is inferred to have had a positive stretch direction down the dip of the shear zone, at a high angle to the transport (simple shear) direction. The interplay of buckling and shearing in the study area is, plausibly, the expression of deformation at the upper boundary of a channel-like flow that succeeded initial crustal thickening.



2006 ◽  
Vol 43 (4) ◽  
pp. 421-432 ◽  
Author(s):  
M K Herrell ◽  
A P Dickin ◽  
W A Morris

Over sixty new neodymium model ages were determined on orthogneisses from the Kipawa–Mattawa region of the Grenville Province to refine previous Nd isotope mapping work in this area. The combined Nd data sets support a tectonic model involving three major thrust sheets in the Kipawa area, separated by major shear zones. The uppermost sheet is correlated with the Allochthonous Polycyclic Belt, represented in the study area by the Lac Watson nappe, along with two allochthonous klippen. These have Nd model ages < 1.8 Ga, consistent with previous work. Within the underlying Parautochthonous Belt, previous workers identified a second major shear zone, separating rocks with Archean and Proterozoic crystallization ages, respectively. These two thrust sheets also have distinct Nd isotope signatures. The lowermost sheet consists of metamorphosed but otherwise relatively pristine Archean crust with Nd model ages > 2.6 Ga, whereas the overlying sheet consists of magmatically reworked Archean parautochthon with model ages from 1.8–2.6 Ga. A residual magnetic-field map developed from aeromagnetic data was compared with the terrane boundaries determined from isotopic data. The aeromagnetic data accurately reflect the margin of relatively pristine Archean crust in the study area, but this boundary does not correspond to the Allochthon Boundary Thrust. Instead, this boundary resulted from downcutting of the basal shear zone of the allochthon. This caused décollement of the strongly reworked Archean parautochthon to generate a duplex thrust sheet that was transported northwestwards over pristine Archean crust.



Sign in / Sign up

Export Citation Format

Share Document