Diagenesis to metamorphism transition in an episutural basin: the late Paleozoic St. Mary’s Basin, Nova Scotia, Canada

2010 ◽  
Vol 47 (2) ◽  
pp. 121-135 ◽  
Author(s):  
Isabel Abad ◽  
J. Brendan Murphy ◽  
Fernando Nieto ◽  
Gabriel Gutiérrez-Alonso

The Late Devonian – Early Carboniferous St. Mary’s Basin in the Canadian Appalachians consists of Horton Group fluviatile and lacustrine clastic rocks. The basin occurs along the boundary between the Avalon and Meguma terranes and developed during coeval dextral shear along that boundary. X-ray diffraction reveals that the rocks contain ubiquitous quartz, K-white mica, and albite; illite–smectite mixed layers and chlorite are very common and Na–K mica, kaolinite, chlorite–smectite mixed layers, K-feldspar, berthierine, and rutile occur in some samples. Crystal-chemical parameters of white mica indicate the pressure and temperature of mineral growth and discriminate between diagenetic, anchizone, and low-grade metamorphic processes. Kübler index values measured in the 5 Å peak and the presence of chlorite–mica stacks are indicative of high-anchizone–epizone grades, with a crystallinity (crystal size and number of defects) that increases towards the Chedabucto Fault, which defines the northern margin of the basin. Kübler index values measured in the 10 Å peak indicate that a late fluid-rich event could have produced the observed illite–smectite mixed layers. The overall clay-mineral content and the b-cell dimension of the K-white micas are typical of postdepositional evolution in extensional sedimentary basins with high heat flow (>35 °C/km). Taken together, our data record two superposed events related to deformation along the basin margins and coeval regional fluid flow, in which retrograde reactions at temperature T < 200 °C were superimposed on a pre-existing prograde assemblage typical of high-anchizone – lower greenschist-facies conditions (T > 300 °C). Regional syntheses indicate that this fluid flow may have occurred during episodes of Late Carboniferous dextral shear along the Avalon–Meguma terrane boundary.

2016 ◽  
Vol 46 (4) ◽  
pp. 567-583 ◽  
Author(s):  
Manuela de Oliveira Carvalho ◽  
◽  
Claudio de Morisson Valeriano ◽  
Pamela Alejandra Aparicio González ◽  
Gustavo Diniz Oliveira ◽  
...  

ABSTRACT: Two regional thrust-sheets of Neoproterozoic metasedimentary rocks occur in the Southern Brasília Belt, northwest Minas Gerais. The lower one comprises the Vazante Group, that is formed in the studied area, from base to top, by the Serra do Garrote (metapelites interlayered with carbonaceous phyllite), Serra do Poço Verde (beige to pink stromatolitic metadolomite with interlayered greenish slates), Morro do Calcário (gray stromatolitic metadolomite interlayered with gray slates) and Serra da Lapa (phyllite with dolarenitic lenses interlayered with slates) formations. The upper thrust sheet consists of the Canastra Group (Paracatu formation): laminated sericite phyllites and carbonaceous phyllites interlayered with quartzite. The Braziliano orogeny resulted in four phases of contractional deformation, associated with low-grade metamorphism. The first two (D1 and D2) are ductile, while the third and fourth ones (D3 and D4) are brittle-ductile. D1 developed a slaty S1 cleavage subparallel to the primary layering, with shallow to steep dips to NW. D2 developed a crenulation cleavage (S2) that dips moderately to NW and is associated with tight to isoclinal folds. D3 and D4 phases developed crenulations and open folds and kink bands. S3 dips steeply to NW, while S4 has moderate to steep dips to NE and SW. White mica crystallinity (Kübler index) measurements in metapelites indicate that both the Canastra and Vazante groups reached anchizone/epizone conditions, and metamorphic discontinuities along thrusts indicate that the peak of metamorphism is pre or syn-thrusting.


1985 ◽  
Vol 49 (352) ◽  
pp. 357-364 ◽  
Author(s):  
R. Offler ◽  
E. Prendergast

AbstractA study of low-grade metamorphism in late Silurian to early Carboniferous rocks in the North Hill End Synclinorium and adjacent anticlinoria has been made by the determination of illite crystallinity and bo values of K-white mica in eighty slates and phyllites. Illite crystallinity values vary from 0.40 Δ°2θ on the Molong Anticlinorium to 0.12 Δ°2θ within the axis of the synclinorium, suggesting anchizonal to epizonal metamorphic conditions. This is in agreement with previous observations on Ca-Al-hydrosilicate assemblages which indicated a change from prehnite-pumpellyite facies in the anticlinoria adjacent to the synclinorium to middle greenschist facies in the axis. Local variations in crystallinity are attributed to variation in ak+ in fluids migrating along cleavage zones.The mean bo value obtained from the pelites is 9.017 Å (σn = 0.008; n = 80) which is in close agreement with that obtained from part of the adjacent Capertee Anticlinorium (x̄ = 9.019 Å; σn = 0.007; n = 52). However, ‘t’ tests indicate that two bo populations are present in the synclinorium (x̄ = 9.019 and 9.022 Å), with the lower values concentrated in the southern portion of this structure. The two populations are considered to be the result of slightly different metamorphic conditions prevailing during the deformation of the rocks in the synclinorium. A higher geothermal gradient affecting rocks giving the lower bo values is attributed to the presence of granitoids at shallower depths than elsewhere in the synclinorium.


2011 ◽  
Vol 38 (2) ◽  
pp. 268 ◽  
Author(s):  
Sebastian O. Verdecchia ◽  
Gilda Collo ◽  
Edgardo G. Baldo

Two tectono-thermal metamorphic events, M1-D1 (S1, with associated white mica and chlorite: WM1-Chl1) and M2-D2 (S2, with development of WM2-Chl2), are established from polyphase white mica growth for low-grade units from the Ordovician metasedimentary successions of La Cebila Metamorphic Complex in the Famatinian belt (western-central Argentina). The thermobarometric characterization of the M1 main event was carried out by means of clay-mineral analysis and crystallo-chemical parameter measurements. Epizonal (temperatures between 300 and 400ºC) and low-pressure conditions are suggested for M1 event, based in Kübler index values ranging from 0.23 to 0.17 Δº2θ, white mica b parameter values between 9.004 and 9.022 Å (mean of 9.014 Å, n=16) and Si contents between 3.13-3.29 a.p.f.u. Temperatures of ~180-270ºC are estimated for the M2 event, with Kübler index values ranging from 0.31 to 0.46 Δº2θ. The M1-D1 event of La Cebila could be linked to highstrain heating tectono-metamorphic Ordovician regime recorded in others complexes from Famatinian foreland region of Sierras Pampeanas.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 738 ◽  
Author(s):  
Mª Dolores Rodríguez-Ruiz ◽  
Isabel Abad ◽  
María J. Bentabol

A detailed characterization of the mineralogy corresponding to the low-grade diagenetic-metamorphic sequence of the clastic rocks from the Beni Mezala antiform has allowed the processes implied in their origin to be stablished, integrating them in the geodynamic evolution of the Rif-Betic mountain range during the Alpine orogeny. A progressive evolution towards chemical and textural equilibrium was observed. The illite “crystallinity” (CIS) ranges from diagenetic-lower anchizone in Ghomaride complex (CIS: 1.50–0.37 Δ°2θ) to epizone in the deepest Federico units (CIS: 0.29–0.21 Δ°2θ). The main phyllosilicates in the diagenetic samples are illite (2M1-1M polytypes) and kaolinite, with mixed-layer illite/smectite and chlorite, but the mixed layers disappear in the lower anchizone samples, which show sudoite and dickite. Pyrophyllite is also present in the upper anchizone (0.43–0.29 Δ°2θ) whereas the epizone samples show muscovite (2M1-3T polytypes), chlorite, paragonite, and intermediate micas. The chlorite geothermometers give a T range of 150 to 400 °C, and the b parameter of 2M1 micas (8.992–9.029 Å) indicates low to intermediate pressure regional metamorphism (1–3 kbar) although the wide range of phengitic substitution in micas and the 3T polytype suggest a wider pressure range in coherence with the clockwise PTt evolution for the Rif Cordillera during the Alpine orogeny.


2021 ◽  
pp. 120642
Author(s):  
Peng Yang ◽  
Keyu Liu ◽  
Zhen Li ◽  
Kai Rankenburg ◽  
Brent I.A. McInnes ◽  
...  

2018 ◽  
Vol 13 (4-5) ◽  
pp. 36-51
Author(s):  
J. V. Frolova ◽  
V. V. Ladygin ◽  
E. M. Spiridonov ◽  
G. N. Ovsyannikov

The article considers the petrogenetic features of the volcanogenic rocks of the Middle Jurassic age of the Mountain Crimea and analyzes their influence on physical (density, porosity, water absorption, and magnetic susceptibility) and physical-mechanical properties (strength, modulus of elasticity, and Poisson's ratio). Among volcanogenic strata there are subvolcanic, effusive and volcanogenic-clastic rocks. All volcanic rocks were altered under the influence of the regional low-grade metamorphism of the zeolite and prehnite-pumpellyite facies, which resulted in a greenstone appearance. Among the secondary mineral the most common are albite, chlorite, quartz, adularia, sericite, calcite, pumpellyite, prenite, zeolites, epidote, sphene, and clay minerals. It is shown that low-grade metamorphism is characterized by heterogenious transformations: there are both slightly modified, practically fresh differences, and fully altered rocks. Tuffs are usually altered to a greater extent than effusive and subvolcanic rocks. In general, effusive and volcanogenic-clastic rocks differ markedly in their physicalmechanical properties, which is due to the peculiarities of their formation: the former are substantially more dense and stronger, less porous and compressible. However, these differences are leveled as a result of intensive changes in mineral composition and porosity in the process of low-grade metamorphism. The most characteristic values of metavolcanite properties were revealed. It is shown that among all studied parameters, the magnetic susceptibility most clearly correlates with the degree of rocks alteration.


Sign in / Sign up

Export Citation Format

Share Document